Find the middle term in the expansion of [x3+9y]10[\frac{x}{3}+9y]^{10}[3x+9y]10 A=41003x6y4=41003x^6y^4=41003x6y4B=51030x4y6=51030x^4y^6=51030x4y6C=60480x5y5=60480x^5y^5=60480x5y5D=61236x5y5=61236x^5y^5=61236x5y5Answer: =61236x5y5=61236x^5y^5=61236x5y5 Read Explanation: [x3+9y]10[\frac{x}{3}+9y]^{10}[3x+9y]10\frac{n}{2}+1)^{th}=>(\frac{10}{2}+1)^{th}=>6^{th}a=x/3,b=9y,n=10,r+1=6,r=5,n−r=5a=x/3, b=9y, n=10, r+1=6, r=5, n-r=5a=x/3,b=9y,n=10,r+1=6,r=5,n−r=5Tr+1=nCran−rbrT_{r+1}=^nC_ra^{n-r}b^rTr+1=nCran−rbrT6=10C5(x3)5(9y)5T_6=^{10}C_5(\frac{x}{3})^5(9y)^5T6=10C5(3x)5(9y)5T6=10!5!×5!×x535×95y5T_6=\frac{10!}{5! \times 5!}\times\frac{x^5}{3^5}\times9^5y^5T6=5!×5!10!×35x5×95y5=10×9×8×7×6×5!5×4×3×2×1×5!×9×9×9×9×93×3×3×3×3×x5y5=\frac{10\times9 \times 8\times7\times6\times5!}{5\times4\times3\times2\times1 \times5!}\times \frac{9\times9\times9\times9\times9}{3\times3\times3\times3\times3} \times x^5y^5=5×4×3×2×1×5!10×9×8×7×6×5!×3×3×3×3×39×9×9×9×9×x5y5=3×2×7×6×35x5y5=3\times2\times7\times6\times3^5x^5y^5=3×2×7×6×35x5y5=252×243x5y5=252 \times 243 x^5y^5=252×243x5y5=61236x5y5=61236x^5y^5=61236x5y5 Read more in App