App Logo

No.1 PSC Learning App

1M+ Downloads
Two positive numbers differ by 1280. When the greater number is divided by the smaller number, the quotient is 7 and the remainder is 50. The greater number is:

A1585

B1458

C1558

D1485

Answer:

D. 1485

Read Explanation:

Given :-

Two positive numbers differ by 1280

When the greater number is divided by the smaller number

The quotient is 7 and the remainder is 50

Concept :- 

Dividend = Quotient ×\times divisor + remainder

Calculation :-

Let greater number = a and

Smaller number = b

From question,

⇒ a - b = 1280    ....(1)

Again from question, 

⇒ a = 7b + 50    ....(2)

Put the value of a from equation (2) into equation (1)

⇒ 7b + 50 - b = 1280 

⇒ 6b = 1280 - 50 

⇒ 6b = 1230 

⇒ b = (12306)(\frac{1230}{6})

⇒ b = 205

Put the value of b in equation (1)

⇒ a - 205 = 1280 

⇒ a = 1280 + 205

⇒ a = 1485

⇒ Greater number = 1485 

∴ Greater number is 1485


Related Questions:

If a + b = 8 and a + a2 b + b + ab2 = 128 then the positive value of a3 + b3 is:

If a+b=73a+b=\frac{7}{3} and a2+b2=319,a^2+b^2=\frac{31}{9}, find27(a3+b3)27(a^3+b^3)

If x : y = 2 : 3 then the value of 3x+2y9x+5y\frac{3x+2y}{9x+5y} will be

Solve the inequality : -3x < 15

If x4+1x4=34x^4+\frac{1}{x^4}=34, then the value of (x1x)2(x-\frac{1}{x})^2 will be