Given that 4tanA = 3 , then the value of4sinA−cosA4sinA+cosA\frac{4sinA-cosA}{4sinA+cosA}4sinA+cosA4sinA−cosA is A1/2B1/√2C0D1/√2Answer: A. 1/2 Read Explanation: 4 tanA = 3tanA = 3/4 tan A = opposite side/adjascent side hypotnuse² = 3² + 4² hypotnuse² = 9 + 16 hypotnuse = 5 sinA = 3/5 cosA= 4/54sinA−cosA4sinA+cosA=(4×35)−45(4×35)+45\frac{4sinA-cosA}{4sinA+cosA} =\frac{(4 \times \frac{3}{5})-\frac{4}{5}}{(4 \times \frac{3}{5})+\frac{4}{5}}4sinA+cosA4sinA−cosA=(4×53)+54(4×53)−54=125−45125+45=\frac{\frac{12}{5}-\frac{4}{5}}{\frac{12}{5}+\frac{4}{5}}=512+54512−548/516/5=816=12\frac{8/5}{16/5}=\frac{8}{16}=\frac{1}{2}16/58/5=168=21 Read more in App