App Logo

No.1 PSC Learning App

1M+ Downloads

Given that 4tanA = 3 , then the value of4sinAcosA4sinA+cosA\frac{4sinA-cosA}{4sinA+cosA} is

A1/2

B1/√2

C0

D1/√2

Answer:

A. 1/2

Read Explanation:

4 tanA = 3

tanA = 3/4

tan A = opposite side/adjascent side

hypotnuse² = 3² + 4²

hypotnuse² = 9 + 16

hypotnuse = 5

sinA = 3/5

cosA= 4/5

4sinAcosA4sinA+cosA=(4×35)45(4×35)+45\frac{4sinA-cosA}{4sinA+cosA} =\frac{(4 \times \frac{3}{5})-\frac{4}{5}}{(4 \times \frac{3}{5})+\frac{4}{5}}

=12545125+45=\frac{\frac{12}{5}-\frac{4}{5}}{\frac{12}{5}+\frac{4}{5}}

8/516/5=816=12\frac{8/5}{16/5}=\frac{8}{16}=\frac{1}{2}


Related Questions:

If cos A + cos B + cos C = 3, then what is the value of sin A + sin B + sin C?

The value of 2tan601+tan260=\frac{2tan60}{1+tan^260}=

What is the Value of cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

Find the distance between top and bottom side of the parallelogram ABCD with side AC = 8, angle BAC = 60°

1000114769.jpg
What is the value of cot 35° cot 40° cot 45° cot 50° cot 55°?