Challenger App

No.1 PSC Learning App

1M+ Downloads

If 4x - 3y = 12 and xy = 5 , then find the value of16x2+9y28\frac{16x^2+9y^2}{8}

A33

B15

C18

D44

Answer:

A. 33

Read Explanation:

4x - 3y = 12

(4x3y)2=122(4x-3y)^2=12^2

16x2+9y224xy=14416x^2+9y^2-24xy=144

16x2+9y224×5=14416x^2+9y^2-24\times5 = 144

16x2+9y2=144+120=26416x^2+9y^2=144+120=264

16x2+9y28=264/8\frac{16x^2+9y^2}{8}=264/8

=33=33


Related Questions:

If S = 3T/2, then express 'T' as a percentage of S + T.

If, (x+1x)=4(x+\frac{1}{x})=4, then the value of x4+1x4x^4+\frac{1}{x^4} is:

If x : y = 2 : 3 then the value of 3x+2y9x+5y\frac{3x+2y}{9x+5y} will be

What number is x if |x +2|=|x-5|?
തുടർച്ചയായ രണ്ട് ഇരട്ട സംഖ്യകളുടെ വർഗ്ഗങ്ങളുടെ വ്യത്യാസം 68 ആയാൽ സംഖ്യകൾ ഏത്?