App Logo

No.1 PSC Learning App

1M+ Downloads

If, (x+1x)=4(x+\frac{1}{x})=4, then the value of x4+1x4x^4+\frac{1}{x^4} is:

A64

B194

C81

D124

Answer:

B. 194

Read Explanation:

Solution:

Given:

(x+1x)=4(x+\frac{1}{x})=4,

Formula used:

(a + b)2 = a2 + b2 + 2ab

Calculations:

According to the question, we have

Squaring both sides,

x2+1x2+2=16x^2+\frac{1}{x^2}+2=16

x2+1x2=14x^2+\frac{1}{x^2}=14

Squaring both sides again, we get

x4+1x4+2=196x^4+\frac{1}{x^4}+2=196

x4+1x4=1962x^4+\frac{1}{x^4}=196-2

∴ The value of x4+1x4x^4+\frac{1}{x^4}  is 194.


Related Questions:

If the sum of the roots of the quadratic equation $5x^2+bx+4=0 is 9, the find the value of b.

(6.42-3.62) / 2.8 എത്ര ?

x = 100, y = 0.05 ആയാൽ ചുവടെ കൊടുത്തിട്ടുള്ളവയിൽ ഏറ്റവും വലുത് ഏത് ?
What number is x if |x +2|=|x-5|?
15/ P = 3 ആയാൽ P എത്ര ?