App Logo

No.1 PSC Learning App

1M+ Downloads

If, (x+1x)=4(x+\frac{1}{x})=4, then the value of x4+1x4x^4+\frac{1}{x^4} is:

A64

B194

C81

D124

Answer:

B. 194

Read Explanation:

Solution:

Given:

(x+1x)=4(x+\frac{1}{x})=4,

Formula used:

(a + b)2 = a2 + b2 + 2ab

Calculations:

According to the question, we have

Squaring both sides,

x2+1x2+2=16x^2+\frac{1}{x^2}+2=16

x2+1x2=14x^2+\frac{1}{x^2}=14

Squaring both sides again, we get

x4+1x4+2=196x^4+\frac{1}{x^4}+2=196

x4+1x4=1962x^4+\frac{1}{x^4}=196-2

∴ The value of x4+1x4x^4+\frac{1}{x^4}  is 194.


Related Questions:

If a + b = 8 and a + a2 b + b + ab2 = 128 then the positive value of a3 + b3 is:

5x², -7x², 13x², 11x², -5x² എന്നിവയുടെ ആകെത്തുക കണ്ടെത്തുക
If x + y = 15 and xy = 14, then the value of x – y is :

If 4x - 3y = 12 and xy = 5 , then find the value of16x2+9y28\frac{16x^2+9y^2}{8}

ചുവടെ കൊടുത്തിരിക്കുന്നവയിൽ ഗണിത പഠനത്തിന് ഏറ്റവും അനുയോജ്യമായ സോഫ്റ്റവെയർ ഏത് ?