If a2+b2+c2=14a^2 + b^2 + c^2 = 14a2+b2+c2=14 andab+bc+ca=11 ab + bc + ca = 11ab+bc+ca=11, find (a+b+c)3=(a + b + c)^3=(a+b+c)3=. A216, -216B36,-36C6,- 6D12, -12Answer: A. 216, -216 Read Explanation: (a+b+c)2=a2+b2+c2+2ab+2bc+2ca(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca(a+b+c)2=a2+b2+c2+2ab+2bc+2caa2+b2+c2=14 a^2 + b^2 + c^2 = 14a2+b2+c2=14ab+bc+ca=11 ab + bc + ca = 11ab+bc+ca=11 Now, (a+b+c)2=14+211=36(a + b + c)^2 = 14 + 2 \sqrt{ 11}= 36(a+b+c)2=14+211=36 a + b + c = +6 , -6 (a+b+c)3=216,−216(a + b + c)^3 = 216 , -216(a+b+c)3=216,−216 Read more in App