Challenger App

No.1 PSC Learning App

1M+ Downloads

If a2+b2+c2=14a^2 + b^2 + c^2 = 14 andab+bc+ca=11 ab + bc + ca = 11, find (a+b+c)3=(a + b + c)^3=.

A216, -216

B36,-36

C6,- 6

D12, -12

Answer:

A. 216, -216

Read Explanation:

(a+b+c)2=a2+b2+c2+2ab+2bc+2ca(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca

a2+b2+c2=14 a^2 + b^2 + c^2 = 14
ab+bc+ca=11 ab + bc + ca = 11

Now,

(a+b+c)2=14+211=36(a + b + c)^2 = 14 + 2 \sqrt{ 11}= 36

a + b + c = +6 , -6

(a+b+c)3=216,216(a + b + c)^3 = 216 , -216


Related Questions:

If (4y4y)=11(4y-\frac{4}{y})=11 , find the value of (y2+1y2)(y^2+\frac{1}{y^2}) .

a2b2a^2-b^2

image.png
(3x - 6)/x - (4y -6)/y + (6z + 6)/z = 0 ആയാൽ (1/x - 1/y - 1/z) എത്രയാണ്?

Find the factors of the expression 3x2 – 5x – 8.