If 1518=x6=10y=z30\frac{15}{18} = \frac{x}{6} = \frac{10}{y} = \frac{z}{30}1815=6x=y10=30z, then what is the value of x+y+z ? A25B37C42D40Answer: C. 42 Read Explanation: If 1518=x6=10y=z30\frac{15}{18} = \frac{x}{6} = \frac{10}{y} = \frac{z}{30}1815=6x=y10=30z1518=x6\frac{15}{18}=\frac{x}{6}1815=6x ⟹ x=15×618=5\implies{x=\frac{15\times6}{18}=5}⟹x=1815×6=51518=10y ⟹ y=18×1015=12\frac{15}{18}=\frac{10}{y}\implies{y=\frac{18\times10}{15}=12}1815=y10⟹y=1518×10=121518=z30 ⟹ z=15×3018=25\frac{15}{18}=\frac{z}{30}\implies{z=\frac{15\times30}{18}=25}1815=30z⟹z=1815×30=25x+y+z=5+12+25=42x+y+z=5+12+25=42x+y+z=5+12+25=42 Read more in App