App Logo

No.1 PSC Learning App

1M+ Downloads

Let fand g be the functions from R to R such thatf(x)=2xf(x)=2x and g(x)=x2g(x) = x ^ 2 What is fg ?

A2x32x^3

B2x22x^2

C4x54x^5

D8x38x^3

Answer:

2x32x^3

Read Explanation:

Understanding Function Operations

  • Functions can be combined using various algebraic operations to form new functions.

  • For two functions f and g mapping from a set R to R (real numbers to real numbers), common operations include addition (f+g), subtraction (f-g), multiplication (fg or f*g), division (f/g), and composition (f o g).

Function Multiplication (fg)

  • When the notation fg is used, it specifically represents the product of the functions f(x) and g(x).

  • Mathematically, the product function is defined as (fg)(x) = f(x) * g(x). This means you multiply the output values of f and g for a given input x.

Step-by-Step Calculation

  1. Given the function f(x) = 2x.

  2. Given the function g(x) = x^2.

  3. To find (fg)(x), we substitute the expressions for f(x) and g(x) into the definition of function multiplication: (fg)(x) = (2x) * (x^2).

  4. Applying the rules of exponents (specifically, a^m * a^n = a^(m+n)), where x can be considered x^1: x * x^2 = x^(1+2) = x^3.

  5. Therefore, (fg)(x) = 2 * x^3 = 2x^3.

Distinction: Function Multiplication vs. Function Composition

  • It is crucial for competitive exams to understand the difference between function multiplication (fg(x) = f(x) * g(x)) and function composition ((f o g)(x) = f(g(x))).

  • For example, with the given functions:

    • Function Multiplication: (fg)(x) = 2x * x^2 = 2x^3.

    • Function Composition: (f o g)(x) = f(g(x)) = f(x^2) = 2(x^2) = 2x^2.

    • Another composition: (g o f)(x) = g(f(x)) = g(2x) = (2x)^2 = 4x^2.

  • These operations yield different results and notations, so accurate interpretation is vital.

Domain of Combined Functions

  • For algebraic operations like multiplication, the domain of the resulting function (fg) is the intersection of the domains of the individual functions (f and g).

  • Since both f(x) = 2x and g(x) = x^2 are defined for all real numbers (Domain = R), their product fg(x) = 2x^3 is also defined for all real numbers.

  • Domain of f is R.

  • Domain of g is R.

  • Domain of fg is R ∩ R = R.


Related Questions:

X ∪ Y യിൽ 50 അംഗങ്ങളും X ൽ 28 അംഗങ്ങളും Y ൽ 32 അംഗങ്ങളും ഉണ്ട് . എങ്കിൽ Y-ൽ മാത്രം എത്ര അംഗങ്ങൾ ഉണ്ടായിരിക്കും ?
A = φ ആയാൽ P(A) യിൽ എത്ര അംഗങ്ങളുണ്ടാകും ?
തന്നിരിക്കുന്നവയിൽ ഏകാംഗ ഗണം ഏതാണ്?
A = { 1, 2, 3, 4, 5, 6}, B = { 2, 4, 6, 8 }. A –B എത്ര ?
n അംഗങ്ങൾ ഉള്ള ഒരു ഗണത്തിന് ശൂന്യമല്ലാത്ത എത്ര ഉപഗണങ്ങളുണ്ട് ?