Challenger App

No.1 PSC Learning App

1M+ Downloads

a\overset{\rightarrow}{a} ഒരു ഏകക സദിശമാണ് , (xa).(x+a)=12(\overset{\rightarrow}{x} - \overset{\rightarrow}{a}).(\overset{\rightarrow}{x}+\overset{\rightarrow}{a})=12 ആയാൽ x\overset{\rightarrow}{x} ന്ടെ വലിപ്പം എത്ര?

(xa).(x+a)=12(\overset{\rightarrow}{x} - \overset{\rightarrow}{a}).(\overset{\rightarrow}{x}+\overset{\rightarrow}{a})=12

A√8

B√9

C√10

D√13

Answer:

D. √13

Read Explanation:

x.x+x.aa.aa.a=12\overset{\rightarrow}{x}.\overset{\rightarrow}{x}+ \overset{\rightarrow}{x}.\overset{\rightarrow}{a}-\overset{\rightarrow}{a}.\overset{\rightarrow}{a}-\overset{\rightarrow}{a}.\overset{\rightarrow}{a}=12

x2a2=12|\overset{\rightarrow}{x}|^2-|\overset{\rightarrow}{a}|^2=12

x21=12|\overset{\rightarrow}{x}|^2-1=12

x2=13|\overset{\rightarrow}{x}|^2=13

x=13|\overset{\rightarrow}{x}|=\sqrt{13}


Related Questions:

a=5,b=6,a.b=25|\overset{\rightarrow}{a}=5|, |\overset{\rightarrow}{b}|=6, \overset{\rightarrow}{a}.\overset{\rightarrow}{b}=-25 ആയാൽ a×b=|\overset{\rightarrow}{a} \times \overset{\rightarrow}{b}|=

In the figure, a square is joined to a regular pentagon and a regular hexagon. The measure of BAC is :

image.png

a=βi+2j+2k,b=2i+2j+βk\overset{\rightarrow}{a}=\beta i+2j +2k , \overset{\rightarrow}{b} = 2i + 2j + \beta k എന്നീ സദിശങ്ങൾ ലംബങ്ങളായാൽ a+bab=|\overset{\rightarrow}{a}+\overset{\rightarrow}{b}|-|\overset{\rightarrow}{a}-\overset{\rightarrow}{b}|=

4i+3j എന്ന സദിശത്തിന്റെ ദിശയിലുള്ള 8i+aj എന്ന സദിശത്തിന്റെ വലിപ്പം 10 ആയാൽ a യുടെ വില ?

Which among the following are the coordinates of the fourth vertex of the parallelogram?

image.png