App Logo

No.1 PSC Learning App

1M+ Downloads

a\overset{\rightarrow}{a} ഒരു ഏകക സദിശമാണ് , (xa).(x+a)=12(\overset{\rightarrow}{x} - \overset{\rightarrow}{a}).(\overset{\rightarrow}{x}+\overset{\rightarrow}{a})=12 ആയാൽ x\overset{\rightarrow}{x} ന്ടെ വലിപ്പം എത്ര?

(xa).(x+a)=12(\overset{\rightarrow}{x} - \overset{\rightarrow}{a}).(\overset{\rightarrow}{x}+\overset{\rightarrow}{a})=12

A√8

B√9

C√10

D√13

Answer:

D. √13

Read Explanation:

x.x+x.aa.aa.a=12\overset{\rightarrow}{x}.\overset{\rightarrow}{x}+ \overset{\rightarrow}{x}.\overset{\rightarrow}{a}-\overset{\rightarrow}{a}.\overset{\rightarrow}{a}-\overset{\rightarrow}{a}.\overset{\rightarrow}{a}=12

x2a2=12|\overset{\rightarrow}{x}|^2-|\overset{\rightarrow}{a}|^2=12

x21=12|\overset{\rightarrow}{x}|^2-1=12

x2=13|\overset{\rightarrow}{x}|^2=13

x=13|\overset{\rightarrow}{x}|=\sqrt{13}


Related Questions:

a=5,b=6,a.b=25|\overset{\rightarrow}{a}=5|, |\overset{\rightarrow}{b}|=6, \overset{\rightarrow}{a}.\overset{\rightarrow}{b}=-25 ആയാൽ a×b=|\overset{\rightarrow}{a} \times \overset{\rightarrow}{b}|=

r(t)=tan1ti+sintj+t2k\overset{\rightarrow}{r(t)}=tan^{-1}ti+sintj+t^2k ആയാൽ r(t)t=0=\overset{\rightarrow}{r'(t)}_{t=0}=

dfdx=2x,f(0)=1\frac{df}{dx}=2x, f(0)=1 ആയ ഏകദം f(x) ഏത് ?

xi -2j + 5k , i + yj -zk എന്നീ സതീശങ്ങൾ സമരേഖീയമാണ് എങ്കിൽ xy²/z =

a\overset{\rightarrow}a ഒരു ഏക സദിശമാണ്,(xa).(x+a)=12(\overset{\rightarrow}{x}-\overset{\rightarrow}{a}).(\overset{\rightarrow}{x}+\overset{\rightarrow}{a})=12 ആയാൽ x-ന്ടെ വലിപ്പം എത്ര ?