Challenger App

No.1 PSC Learning App

1M+ Downloads

a\overset{\rightarrow}{a} ഒരു ഏകക സദിശമാണ് , (xa).(x+a)=12(\overset{\rightarrow}{x} - \overset{\rightarrow}{a}).(\overset{\rightarrow}{x}+\overset{\rightarrow}{a})=12 ആയാൽ x\overset{\rightarrow}{x} ന്ടെ വലിപ്പം എത്ര?

(xa).(x+a)=12(\overset{\rightarrow}{x} - \overset{\rightarrow}{a}).(\overset{\rightarrow}{x}+\overset{\rightarrow}{a})=12

A√8

B√9

C√10

D√13

Answer:

D. √13

Read Explanation:

x.x+x.aa.aa.a=12\overset{\rightarrow}{x}.\overset{\rightarrow}{x}+ \overset{\rightarrow}{x}.\overset{\rightarrow}{a}-\overset{\rightarrow}{a}.\overset{\rightarrow}{a}-\overset{\rightarrow}{a}.\overset{\rightarrow}{a}=12

x2a2=12|\overset{\rightarrow}{x}|^2-|\overset{\rightarrow}{a}|^2=12

x21=12|\overset{\rightarrow}{x}|^2-1=12

x2=13|\overset{\rightarrow}{x}|^2=13

x=13|\overset{\rightarrow}{x}|=\sqrt{13}


Related Questions:

a=5,b=6,a.b=25|\overset{\rightarrow}{a}=5|, |\overset{\rightarrow}{b}|=6, \overset{\rightarrow}{a}.\overset{\rightarrow}{b}=-25 ആയാൽ a×b=|\overset{\rightarrow}{a} \times \overset{\rightarrow}{b}|=

P(1,-2,3) ,Q(-1,-2,-3) എന്നീ രണ്ടു ബിന്ദുക്കൾ തന്നിരിക്കുന്നു , O എന്നത് അധര ബിന്ദുവായാൽ PQ+OP|\overset{\rightarrow}{PQ}+\overset{\rightarrow}{OP}|എത്ര ?

ഫോക്കസ് x അക്ഷത്തിലും കേന്ദ്രം ആധാര ബിന്ദുവുമായ ന്യൂനവക്രങ്ങളുടെയും അവകലജ സമവാക്യത്തിന്റെ ക്രമം കൃതി ഏത് ?

a=2i7j+k,b=i+3j5k\overset{\rightarrow}{a} =2i-7j+k, \overset{\rightarrow}{b}=i+3j-5k എന്നീ സദിശങ്ങൾ തന്നിരിക്കുന്നു. a.mb=120\overset{\rightarrow}{a}.m\overset{\rightarrow}{b}=120 ആയാൽ m ന്ടെ വിലയെന്ത് ?

60 i + 3j , 40i -8j , βi -52j എന്നീ വെക്ടറുകൾ collinear ആണെങ്കിൽ ആണെങ്കിൽ 'a' യുടെ മൂല്യം ?