5+5+5+........=x\sqrt{5+{\sqrt{5+{\sqrt{5+........}}}}}=x5+5+5+........=xfind x A=−1+212=\frac{-1+{\sqrt{21}}}{{2}}=2−1+21B1+212\frac{1+{\sqrt{21}}}{{2}}21+21C1−212\frac{1-{\sqrt{21}}}{{2}}21−21D1+52\frac{1+{\sqrt{5}}}{{2}}21+5Answer: 1+212\frac{1+{\sqrt{21}}}{{2}}21+21 Read Explanation: If 5+5+5+........=x\sqrt{5+{\sqrt{5+{\sqrt{5+........}}}}}=x5+5+5+........=xx=1+4×5+12x=\frac{1+\sqrt{4\times5+1}}{2}x=21+4×5+1=1+212=\frac{1+{\sqrt{21}}}{{2}}=21+21∵a+a+a+........=x\because \sqrt{a+{\sqrt{a+{\sqrt{a+........}}}}}=x∵a+a+a+........=xthenx=1+4×a+12{x}=\frac{1+\sqrt{4\times{a}+1}}{2}x=21+4×a+1 Read more in App