App Logo

No.1 PSC Learning App

1M+ Downloads

(255)x=(35)x+1(25\sqrt{5})^{x}=(^3\sqrt5)^{x+1}, x തുല്യമായത് ഏതാണ്?

A1/5

B2/13

C2/15

D5/3

Answer:

B. 2/13

Read Explanation:

(255)x=(35)x+1(25\sqrt{5})^{x}=(^3\sqrt5)^{x+1}

(52×51/2)x=(51/3)x+1(5^2\times5^{1/2})^x=(5^{1/3})^{x+1}

55x/2=5(x+1)/35^{5x/2}=5^{(x+1)/3}

5x/2=(x+1)/35x/2=(x+1)/3

15x=2x+215x=2x+2

13x=213x=2

x=2/13x=2/13


Related Questions:

$$ൻ്റെ വില എത്ര ?



(323+2)+(3+232)= (\frac {\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}})+(\frac {\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}) =

image.png

625+225+25+5=?\sqrt{625}+\sqrt{225}+\sqrt{25}+5=?

√(3x -2) + 3 = 8 ആയാൽ 'x'ന്റെ വില എന്ത്?