App Logo

No.1 PSC Learning App

1M+ Downloads

A=x1x+1A=\frac{x-1}{x+1}, then the value of A1AA-\frac{1}{A} is:

A4(2x1)x21\frac{-4(2x-1)}{x^2-1}

Bx214(2x1){x^2-1}{-4(2x-1)}

Cx214(2x+1){x^2-1}{-4(2x+1)}

D4xx21{-4x}{x^2-1}

Answer:

4xx21{-4x}{x^2-1}

Read Explanation:

Given:

A=x1x+1A=\frac{x-1}{x+1}

Formula used:

(a+b)2=a2+2ab+b2(a+b)^2=a^2+2ab+b^2

(a2b2)=(ab)(a+b)(a^2-b^2)=(a-b)(a+b)

Calculation:

A1AA-\frac{1}{A}

Put the value of A=x1x+1A=\frac{x-1}{x+1} in the question

(x1)(x+1)(x+1)(x1)\frac{(x-1)}{(x+1)}-\frac{(x+1)}{(x-1)}

(x1)×(x+1)(x+1)×(x+1)x21\frac{(x-1)\times{(x+1)}-(x+1)\times{(x+1)}}{x^2-1}

 4xx21\frac{-4x}{x^2-1}

∴ Correct answer is  4xx21\frac{-4x}{x^2-1}

Short trick:

Put the value of x = 2 

So,

A=13A = \frac{1}{3}

According to the question,

A1AA-\frac{1}{A}

133\frac{1}{3}-3

83\frac{-8}{3}

Then check the option you get the answer 

Put the value in option (D)

4xx21\frac{-4x}{x^2-1}

(4×2)(41)\frac{(-4\times{2})}{(4-1)}

83\frac{-8}{3}

Correct answer is  4xx21\frac{-4x}{x^2-1}



Related Questions:

In the expansion of (2x+y)3(2xy)3(2x + y )^3-(2x - y)^3, the coefficient of x2yx^2y is:

x and y are two positive integers x-y and x+y are two prime numbers. Then y is:

If (m-n)2=64 and mn=180, then (m+n)² is:

a-(b-(c-d)) =................

Find the factors of the expression 3x25x83x^2-5x-8