App Logo

No.1 PSC Learning App

1M+ Downloads

A=x1x+1A=\frac{x-1}{x+1}, then the value of A1AA-\frac{1}{A} is:

A4(2x1)x21\frac{-4(2x-1)}{x^2-1}

Bx214(2x1){x^2-1}{-4(2x-1)}

Cx214(2x+1){x^2-1}{-4(2x+1)}

D4xx21{-4x}{x^2-1}

Answer:

4xx21{-4x}{x^2-1}

Read Explanation:

Given:

A=x1x+1A=\frac{x-1}{x+1}

Formula used:

(a+b)2=a2+2ab+b2(a+b)^2=a^2+2ab+b^2

(a2b2)=(ab)(a+b)(a^2-b^2)=(a-b)(a+b)

Calculation:

A1AA-\frac{1}{A}

Put the value of A=x1x+1A=\frac{x-1}{x+1} in the question

(x1)(x+1)(x+1)(x1)\frac{(x-1)}{(x+1)}-\frac{(x+1)}{(x-1)}

(x1)×(x+1)(x+1)×(x+1)x21\frac{(x-1)\times{(x+1)}-(x+1)\times{(x+1)}}{x^2-1}

 4xx21\frac{-4x}{x^2-1}

∴ Correct answer is  4xx21\frac{-4x}{x^2-1}

Short trick:

Put the value of x = 2 

So,

A=13A = \frac{1}{3}

According to the question,

A1AA-\frac{1}{A}

133\frac{1}{3}-3

83\frac{-8}{3}

Then check the option you get the answer 

Put the value in option (D)

4xx21\frac{-4x}{x^2-1}

(4×2)(41)\frac{(-4\times{2})}{(4-1)}

83\frac{-8}{3}

Correct answer is  4xx21\frac{-4x}{x^2-1}



Related Questions:

If a3+b3+c33abc=126,a^3 + b^3 + c^3 - 3abc = 126, a + b + c = 6, then the value of (ab + bc + ca) is:

An aeroplane is moving at a constant altitude 'h'. At 10:00 AM, it is seen at an elevation of 30°. 1 minute later, it is observed at an elevation of 60°. If the speed of the plane is 960 km/h, then find 'h'.
If the reciprocal of 1-x is 1+x, then what number is x ?

If a + b + c = 6, a3 + b3 + c3 - 3 abc = 342, and a2 + b2 + c2 = 50, then what is the value of ab + bc + ca?

If S = 3T/2, then express 'T' as a percentage of S + T.