App Logo

No.1 PSC Learning App

1M+ Downloads

In the expansion of (2x+y)3(2xy)3(2x + y )^3-(2x - y)^3, the coefficient of x2yx^2y is:

A24

B18

C12

D16

Answer:

A. 24

Read Explanation:

Solution:

Formula:

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a - b)3 = a3 - 3a2b + 3ab2 - b3

Calculation:

(2x + y)3 = 8x3 + 12x2y + 6xy2 + y3

(2x - y) = 8x3 - 12x2y + 6xy2 - y3

( 2x + y )- ( 2x - y)3 = 8x3 + 12x2y + 6xy2 + y3 - 8x3 + 12x2y - 6xy2 + y3

( 2x + y )- ( 2x - y)3 = 24x2y + 2y3

∴ The coefficient of x2y is 24.


Related Questions:

If 4a+15a=44a+\frac{1}{5a}=4 , then the value of 25a2+116a225a^2+\frac{1}{16a^2} is:

If x : y = 2 : 3 then the value of 3x+2y9x+5y\frac{3x+2y}{9x+5y} will be

If x4+1x4=25716x^4+\frac{1}{x^4}=\frac{257}{16} then find 813(x3+1x3)\frac{8}{13}(x^3+\frac{1}{x^3}), where x>0.

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is:

If, (x+1x)=4(x+\frac{1}{x})=4, then the value of x4+1x4x^4+\frac{1}{x^4} is: