$$Change the following recurring decimal into a fraction.$0.\overline{49}$ A49/100B49/90C49/99D49/9Answer: C. 49/99 Read Explanation: let,x=0.4949‾let,{x}=0.49\overline{49}let,x=0.4949100x=49.4949‾100x=49.49\overline{49}100x=49.494999x=100x−x99x=100x-x99x=100x−x99x=4999x=4999x=49 ⟹ x=4999\implies{x}=\frac{49}{99}⟹x=9949ORORORabcd‾=repeatedtermnumberof9sfortherepeatedterm\overline{abcd}=\frac{repeated term}{number of 9s for the repeated term}abcd=numberof9sfortherepeatedtermrepeatedterm0.49‾=49990.\overline{49}=\frac{49}{99}0.49=9949 Read more in App