App Logo

No.1 PSC Learning App

1M+ Downloads

$$Change the following recurring decimal into a fraction.

$0.\overline{49}$

A49/100

B49/90

C49/99

D49/9

Answer:

C. 49/99

Read Explanation:

let,x=0.4949let,{x}=0.49\overline{49}

100x=49.4949100x=49.49\overline{49}

99x=100xx99x=100x-x

99x=4999x=49

    x=4999\implies{x}=\frac{49}{99}

OROR

abcd=repeatedtermnumberof9sfortherepeatedterm\overline{abcd}=\frac{repeated term}{number of 9s for the repeated term}

0.49=49990.\overline{49}=\frac{49}{99}


Related Questions:

Find the sum of the first 100 natural numbers :

Out of six consecutive natural numbers, if the sum of first three is 27, what is the sum of the other three ?
താഴെ തന്നിരിക്കുന്ന സംഖ്യകൾ അവരോഹണ ക്രമത്തിൽ എഴുതുമ്പോൾ മൂന്നാമതായി വരുന്ന സംഖ്യ ഏത് ? 115, 125, 105, 145, 118, 121, 119
If the digit 1 is placed after a two digit number whose ten's digit is x and units digit is y then the new number is :