App Logo

No.1 PSC Learning App

1M+ Downloads

$$Change the following recurring decimal into a fraction.

$0.\overline{49}$

A49/100

B49/90

C49/99

D49/9

Answer:

C. 49/99

Read Explanation:

let,x=0.4949let,{x}=0.49\overline{49}

100x=49.4949100x=49.49\overline{49}

99x=100xx99x=100x-x

99x=4999x=49

    x=4999\implies{x}=\frac{49}{99}

OROR

abcd=repeatedtermnumberof9sfortherepeatedterm\overline{abcd}=\frac{repeated term}{number of 9s for the repeated term}

0.49=49990.\overline{49}=\frac{49}{99}


Related Questions:

1+2+3+...............+200=?
100 × 83 × 39 നെ 9 കൊണ്ട് ഹരിച്ചാലുള്ള ശിഷ്ടം എത്ര?
The sum of three consecutive odd numbers is 33. Which will be the least number?
Find the number of factors of 180?

As nine-digit number 89563x87y is divisible by 72. What is the value of 7x3y\sqrt{7x-3y}