App Logo

No.1 PSC Learning App

1M+ Downloads

$$Change the following recurring decimal into a fraction.

$0.\overline{49}$

A49/100

B49/90

C49/99

D49/9

Answer:

C. 49/99

Read Explanation:

let,x=0.4949let,{x}=0.49\overline{49}

100x=49.4949100x=49.49\overline{49}

99x=100xx99x=100x-x

99x=4999x=49

    x=4999\implies{x}=\frac{49}{99}

OROR

abcd=repeatedtermnumberof9sfortherepeatedterm\overline{abcd}=\frac{repeated term}{number of 9s for the repeated term}

0.49=49990.\overline{49}=\frac{49}{99}


Related Questions:

Which Indian language has obtained Jnanpith, the highest literary award in India, the maximum number of times ?
A number divided by 56 gives 29 as remainder. If the same number is divided by 8, the remainder will be
Find the sum of the first 100 natural numbers :
തുടർച്ചയായ 4 ഒറ്റ സംഖ്യകളുടെ ആകെത്തുക 976 ആണെങ്കിൽ ആ 4-ൽ ഏറ്റവും ചെറിയ ഒറ്റസംഖ്യ ആണ്.
പൂരിപ്പിക്കുക 2, 5, 11, 23 ______