App Logo

No.1 PSC Learning App

1M+ Downloads

Evaluate sin54cos36+sec46cosec44\frac{\sin 54^{\circ}}{\cos 36^{\circ}}+\frac{\sec 46^{\circ}}{\operatorname{cosec} 44^{\circ}}

A0

B-1

C2

D1

Answer:

C. 2

Read Explanation:

Solution:

Formula used:

sin ( 90 - θ ) = cosθθ , sec ( 90 - θ ) = cosecθ 

Calculation:

sin 54/cos 36 + sec 46/cosec 44 

As, we know that sin( 90 - θ ) = cosθ  , sec (90 - θ ) = cosecθ 

⇒ sin ( 90 - 36 ) /cos36 + sec( 90 - 44 ) /cosec44

⇒ cos36/cos36 + cosec44/cosec44 = 1 + 1 = 2  

Hence, the required value is 2 .


Related Questions:

If secθ=43=\frac{4}{3} , what is the value of tan2 θ + tan4 θ?

Find the value of tan 8° tan 22° cot 60° tan 68° tan 82°

In the given figure ABC=ABD,BC=BDthenCAB=\angle{ABC} = \angle{ABD}, BC = BD then \triangle{CAB} =\triangle___________

image.png
If cos A + cos B + cos C = 3, then what is the value of sin A + sin B + sin C?
Two angles are complementary. The larger angle is 6º less than thrice the measure of the smaller angle. What is the measure of the larger angle?