App Logo

No.1 PSC Learning App

1M+ Downloads

Find the degree of the polynomial p(x)q(x); p(x)=2x2+4x+2p(x)=2x^2+4x+2,q(x)=4x+6q(x)=4x+6

A2

B4

C5

D3

Answer:

D. 3

Read Explanation:

p(x)=2x2+4x+2p(x)=2x^2+4x+2,q(x)=4x+6q(x)=4x+6

p(x)q(x)=2x2[4x+6]+4x[4x+6]+2[4x+6]p(x)q(x)=2x^2[4x+6]+4x[4x+6]+2[4x+6]

=8x3+12x2+16x2+24x+8x+12=8x^3+12x^2+16x^2+24x+8x+12

=8x3+28x2+32x+12=8x^3+28x^2+32x+12

degree of the polynomial p(x)q(x) = 3


Related Questions:

image.png

If a and b are the roots of x2+x2=0x^2 + x - 2 = 0, then the quadratic equation in x whose roots are 1a+1b\frac1a + \frac1b and ab is:

If 1+31 + \sqrt{3} and 131 - \sqrt{3} are the roots of a quadratic equation, then the quadratic equation is:

If x²+2x+9 = (x-2)(x-3), then the resultant equation is:

p(x)=2x2+3x+7p(x) =2x^2+3x+7,q(x)=6x2+8x9q(x)=6x^2+8x-9Find p(x)+q(x)