$$Find the number of zeros at the right end of$12^5\times25^2\times8^3\times35^2\times14^3$ A5B7C6D8Answer: C. 6 Read Explanation: To find the zeros at the right end we have to prime factorize each term$12^5\times25^2\times8^3\times35^2\times14^3$$=(2^2\times3)^5\times(5^2)^2\times(2^3)^3\times(5\times7)^2\times(2\times7)^3$$=2^{10}\times3^5\times5^4\times2^9\times7^2\times5^2\times7^3\times2^3$$=2^{22}\times3^5\times5^6\times7^5$ the number of zeros at the right end = powers of 5 = 6$$Since 0 is obtained when 5 is multiplied by 2 Read more in App