App Logo

No.1 PSC Learning App

1M+ Downloads

$$Find the number of zeros at the right end of

$12^5\times25^2\times8^3\times35^2\times14^3$

A5

B7

C6

D8

Answer:

C. 6

Read Explanation:

To find the zeros at the right end we have to prime factorize each term

$12^5\times25^2\times8^3\times35^2\times14^3$

$=(2^2\times3)^5\times(5^2)^2\times(2^3)^3\times(5\times7)^2\times(2\times7)^3$

$=2^{10}\times3^5\times5^4\times2^9\times7^2\times5^2\times7^3\times2^3$

$=2^{22}\times3^5\times5^6\times7^5$

the number of zeros at the right end = powers of 5 = 6

$$Since 0 is obtained when 5 is multiplied by 2


Related Questions:

'I' ഒരു ഇമാജിനറി നമ്പർ ആയാൽ 'i^9' ന്റെ വില എഴുതുക.
38, 45, 207, 389 ഒറ്റയാനെ കണ്ടെത്തുക :
The difference between two numbers is 43 and their product is 1344. What is the sum of the numbers?
The sum of two numbers is 10 . Their product is 20 . Find the sum of the reciprocals of the two numbers:
The sum of the first 8 prime numbers divided by 7 is equal to