App Logo

No.1 PSC Learning App

1M+ Downloads

If 4 cos2θ - 3 sin2θ + 2 = 0, then the value of tanθ is (where 0 ≤ θ < 90°)

A2\sqrt{2}

B6\sqrt{6}

C13\frac{1}{\sqrt{3}}

D1

Answer:

6\sqrt{6}

Read Explanation:

Solution:

Given

4 cos2 θ - 3 sin2 θ + 2 = 0

Formula:

sin2θ + cos2θ = 1

tan2θ = sin2θ/cos2θ

Calculation:

4 cos2θ - 3 sin2θ + 2 = 0

⇒ 4 cos2θ - 3 (1 - cos2θ) + 2 = 0

⇒ 4 cos2θ - 3 + 3 cos2θ + 2 = 0

⇒ 7 cos2θ - 1 = 0

⇒ 7 cos2θ = 1

⇒ cos2θ = 1/7

sin2θ + cos2θ = 1

⇒ sin2θ = 1 - 1/7

⇒ sin2θ = 6/7

Now,

tan2θ = sin2θ/cos2θ

⇒ tan2θ = (6/7)/(1/7)

⇒ tan2θ = 6

∴ tanθ = √6


Related Questions:

A triangle is to be drawn with one side 6cm and an angle on it is 45 what should be the minimum length of the side opposiste to this angle?
image.png
image.png

In the figure, AB=4 centimetres, BC =5 centimetres. <B=90° cos C is:

cosecθsecθ=?\frac{cosec\theta}{sec\theta}=?