App Logo

No.1 PSC Learning App

1M+ Downloads

If a + b + c = 7 and a3+b3+c33abc=175a^3 + b^3 + c^3-3abc = 175, then what is the value of (ab + bc + ca)?

A8

B7

C6

D9

Answer:

A. 8

Read Explanation:

Solution:

Given:

a + b + c = 7

a3 + b3 + c3 - 3abc = 175

Concept used:

a+ b3 + c3 - 3abc = (a + b + c)[(a + b + c)2 - 3(ab + bc + ca)]

Calculation:

a3+b3+c33abc=(a+b+c)[(a+b+c)23(ab+bc+ca)]a^3+b^3+c^3-3abc=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]

175=7×[(7)23(ab+bc+ca)]175=7\times{[(7)^2-3(ab+bc+ca)]}

25=493(ab+bc+ca)25=49-3(ab+bc+ca)

⇒ 24 = 3(ab + bc + ca)

⇒ ab + bc + ca = 8

∴ The value of given identities is 8.


Related Questions:

If (a+1/a3)2=16(a+1/a-3)^2=16 then find a3+1/a3a^3+1/a^3

If the sum and product of two numbers are respectively 40 and 375, then find the numbers
ഒരു സംഖ്യയുടെ ഇരട്ടിയും പകുതിയും കാൽഭാഗവും ഒന്നും ചേർന്നാൽ 100 കിട്ടും എങ്കിൽ സംഖ്യയേത് ?
The sum of two numbers is 59 and their product is 840. Find the sum of their squares.
If a = 355, b = 356, c = 357, then find the value of a3+b3+c33abc=a^3+b^3+c^3-3abc=