Solution:
Given:
a + b + c = 7
a3 + b3 + c3 - 3abc = 175
Concept used:
a3 + b3 + c3 - 3abc = (a + b + c)[(a + b + c)2 - 3(ab + bc + ca)]
Calculation:
a3+b3+c3−3abc=(a+b+c)[(a+b+c)2−3(ab+bc+ca)]
⇒175=7×[(7)2−3(ab+bc+ca)]
⇒25=49−3(ab+bc+ca)
⇒ 24 = 3(ab + bc + ca)
⇒ ab + bc + ca = 8
∴ The value of given identities is 8.