App Logo

No.1 PSC Learning App

1M+ Downloads

If a is positive and a2+1a2=7a^2+\frac{1}{a^2}=7, thenfind a3+1a3a^3+\frac{1}{a^3}.

A21

B373\sqrt{7}

C18

D777\sqrt{7}

Answer:

C. 18

Read Explanation:

Solution:

Formula used:

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a+ b3 + 3ab(a + b)

Calculation:

Given that, a2+1a2=7a^2+\frac{1}{a^2}=7

a2+1a2+2=9⇒a^2+\frac{1}{a^2}+2=9

By using the above formula,

(a2+1a2)2=9⇒(a^2+\frac{1}{a^2})^2=9

(a+1a)=3⇒(a+\frac{1}{a})=3 ----------(1)

We know  that, (a + b)3 = a3 + b3 + 3ab(a + b)

a3+1a3+3(a×1a)(a+1a)=27⇒a^3+\frac{1}{a^3}+3(a\times{\frac{1}{a}})(a+\frac{1}{a}) =27

Using equation (1)

a3+1a3+3×3=27⇒a^3+\frac{1}{a^3}+3\times{3}=27

a3+1a3=279=18⇒a^3+\frac{1}{a^3}=27-9=18


Related Questions:

The Sum of the roots of the quadratic equation 4x2+7x21=04x^2+7x-21=0 is:

If 4a+15a=44a+\frac{1}{5a}=4 , then the value of 25a2+116a225a^2+\frac{1}{16a^2} is:

P(x)= x²+ax+b and P(-m)-P(-n)-0. Then (m+1) (n+1) is:
X # Y = XY + x - Y ആണ് എങ്കിൽ (6#5)× (3#2) എത്ര?

If (a + b + c) = 17, and (a2 + b2 + c2) = 101, find the value of (a - b)2 + (b - c)2 + (c - a)2.