App Logo

No.1 PSC Learning App

1M+ Downloads

If a is positive and a2+1a2=7a^2+\frac{1}{a^2}=7, thenfind a3+1a3a^3+\frac{1}{a^3}.

A21

B373\sqrt{7}

C18

D777\sqrt{7}

Answer:

C. 18

Read Explanation:

Solution:

Formula used:

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a+ b3 + 3ab(a + b)

Calculation:

Given that, a2+1a2=7a^2+\frac{1}{a^2}=7

a2+1a2+2=9⇒a^2+\frac{1}{a^2}+2=9

By using the above formula,

(a2+1a2)2=9⇒(a^2+\frac{1}{a^2})^2=9

(a+1a)=3⇒(a+\frac{1}{a})=3 ----------(1)

We know  that, (a + b)3 = a3 + b3 + 3ab(a + b)

a3+1a3+3(a×1a)(a+1a)=27⇒a^3+\frac{1}{a^3}+3(a\times{\frac{1}{a}})(a+\frac{1}{a}) =27

Using equation (1)

a3+1a3+3×3=27⇒a^3+\frac{1}{a^3}+3\times{3}=27

a3+1a3=279=18⇒a^3+\frac{1}{a^3}=27-9=18


Related Questions:

2x - 3y is a factor of:

If x1x=3x-\frac{1}{x} = 3, then the value of x31x3x^3-\frac{1}{x^3} is

If a = 355, b = 356, c = 357, then find the value of a3+b3+c33abc=a^3+b^3+c^3-3abc=

If x + y = 4, then the value of (x3 + y3 + 12xy) is

If a + b =10 and ab = 16 finda3+b3a^3+b^3