If a is positive and a2+a21=7, thenfind a3+a31.
A21
B37
C18
D77
Answer:
C. 18
Read Explanation:
Solution:
Formula used:
(a + b)2 = a2 + 2ab + b2
(a + b)3 = a3 + b3 + 3ab(a + b)
Calculation:
Given that, a2+a21=7
⇒a2+a21+2=9
By using the above formula,
⇒(a2+a21)2=9
⇒(a+a1)=3 ----------(1)
We know that, (a + b)3 = a3 + b3 + 3ab(a + b)
⇒a3+a31+3(a×a1)(a+a1)=27
Using equation (1)
⇒a3+a31+3×3=27
⇒a3+a31=27−9=18