If a+b=37 and a2+b2=931, find27(a3+b3)
A154
B156
C152
D164
Answer:
A. 154
Read Explanation:
Solution:
Given:
a+b=37
a2+b2=931
Formula used:
(a + b)2 = a2 + b2 + 2ab
a3 + b3 = (a + b)( a2 + b2 – ab)
Calculation:
According to the question,
⇒ a+b=37
Squaring both sides,
⇒ (a+b)2=(37)2
⇒ a2+b2+2ab=949
⇒ 931+2ab=949
⇒ 2ab=949−931
⇒ 2ab=918
⇒ 2ab = 2
⇒ ab = 1
According to the formula,
⇒ a3 + b3 = (a + b)( a2 + b2 – ab)
Multiply 27 on both sides,
⇒ 27(a3 + b3) = 27(a + b)( a2 + b2 – ab)
⇒ 27(a3 + b3) = 27(37)(931−1)
⇒ 27(a3 + b3) = 27(37)(922)
⇒ 27(a3 + b3) = 22×7
⇒ 27(a3 + b3) = 154
∴ The value of 27(a3 + b3) is 154.