App Logo

No.1 PSC Learning App

1M+ Downloads

If a+b=73a+b=\frac{7}{3} and a2+b2=319,a^2+b^2=\frac{31}{9}, find27(a3+b3)27(a^3+b^3)

A154

B156

C152

D164

Answer:

A. 154

Read Explanation:

Solution:

Given:

a+b=73a + b =\frac{7}{3}

a2+b2=319a^2+b^2=\frac{31}{9}

Formula used:

(a + b)2 = a2 + b2 + 2ab

a3 + b3 = (a + b)( a2 + b2 – ab)

Calculation:

According to the question,

a+b=73a + b = \frac{7}{3}

Squaring both sides,

(a+b)2=(73)2(a+b)^2=(\frac{7}{3})^2

a2+b2+2ab=499a^2+b^2+2ab=\frac{49}{9}

319+2ab=499\frac{31}{9} + 2ab = \frac{49}{9}

2ab=4993192ab = \frac{49}{9}-\frac{31}{9}

2ab=1892ab = \frac{18}{9}

⇒ 2ab = 2

⇒ ab = 1

According to the formula,

⇒ a3 + b3 = (a + b)( a2 + b2 – ab)

Multiply 27 on both sides,

⇒ 27(a3 + b3) = 27(a + b)( a2 + b2 – ab)

⇒ 27(a3 + b3) = 27(73)(3191)27(\frac{7}{3})(\frac{31}{9}-1)

⇒ 27(a3 + b3) = 27(73)(229)27(\frac{7}{3})(\frac{22}{9})

⇒ 27(a3 + b3) = 22×722\times{7}

⇒ 27(a3 + b3) = 154

∴ The value of 27(a3 + b3) is 154.


Related Questions:

Is (x2)2+1=2x3(x-2)^2+1=2x-3 a quadratic equation, then find the roots

(b – c)(b + c) + (c – a)(c + a) + (a – b) (a + b) എന്നതിൻ്റെ മൂല്യം കണ്ടെത്തുക
If the sum of two numbers is 11 and the sum of their squares is 65, then the sum of their cubes will be:
P(x) ഒരു ഒന്നാം കൃതി ബഹുപദമാണ് , ഇവിടെ P(0) = 3 എന്നും P(1) = 0 എന്നും നൽകിയിരിക്കുന്നു. എന്നാൽ P(x) എന്താണ്?

If x+12x=3x+\frac{1}{2x}=3, find the value of 8x3+1x38x^3+\frac{1}{x^3}.