App Logo

No.1 PSC Learning App

1M+ Downloads

If a+b=73a+b=\frac{7}{3} and a2+b2=319,a^2+b^2=\frac{31}{9}, find27(a3+b3)27(a^3+b^3)

A154

B156

C152

D164

Answer:

A. 154

Read Explanation:

Solution:

Given:

a+b=73a + b =\frac{7}{3}

a2+b2=319a^2+b^2=\frac{31}{9}

Formula used:

(a + b)2 = a2 + b2 + 2ab

a3 + b3 = (a + b)( a2 + b2 – ab)

Calculation:

According to the question,

a+b=73a + b = \frac{7}{3}

Squaring both sides,

(a+b)2=(73)2(a+b)^2=(\frac{7}{3})^2

a2+b2+2ab=499a^2+b^2+2ab=\frac{49}{9}

319+2ab=499\frac{31}{9} + 2ab = \frac{49}{9}

2ab=4993192ab = \frac{49}{9}-\frac{31}{9}

2ab=1892ab = \frac{18}{9}

⇒ 2ab = 2

⇒ ab = 1

According to the formula,

⇒ a3 + b3 = (a + b)( a2 + b2 – ab)

Multiply 27 on both sides,

⇒ 27(a3 + b3) = 27(a + b)( a2 + b2 – ab)

⇒ 27(a3 + b3) = 27(73)(3191)27(\frac{7}{3})(\frac{31}{9}-1)

⇒ 27(a3 + b3) = 27(73)(229)27(\frac{7}{3})(\frac{22}{9})

⇒ 27(a3 + b3) = 22×722\times{7}

⇒ 27(a3 + b3) = 154

∴ The value of 27(a3 + b3) is 154.


Related Questions:

If a + b + c = 6, a2+b2+c2=30a^2 + b^2 + c^2 = 30 and a3+b3+c3=165,a^3 + b^3 + c^3 = 165, then the value of 4abc is:

A student wrote x5x x3=x15 As a mathematics teacher, you:

If x2+1x2=38x^2+\frac{1}{x^2}=38 , then what is the value of x1x\left| {x - \frac{1}{x}} \right|

A=x1x+1A=\frac{x-1}{x+1}, then the value of A1AA-\frac{1}{A} is:

If a + b + c = 7 and a3+b3+c33abc=175a^3 + b^3 + c^3-3abc = 175, then what is the value of (ab + bc + ca)?