App Logo

No.1 PSC Learning App

1M+ Downloads

If x2+1x2=38x^2+\frac{1}{x^2}=38 , then what is the value of x1x\left| {x - \frac{1}{x}} \right|

A9

B6

C5

D4

Answer:

B. 6

Read Explanation:

Given:

x2 + 1x2\frac{1}{x^2} = 38

Formula:

(x1x)2=x2+1x22(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2

| x | = x

| -x | = x

Calculation:

According to the formula

(x1x)2=x2+1x22(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2

(x1x)2=382(x-\frac{1}{x})^2=38-2

(x1x)=36(x-\frac{1}{x})=\sqrt{36}

(x1x)=6(x-\frac{1}{x})=6

Now,

x1x\left| {x - \frac{1}{x}} \right| =  | 6 | = 6.

Shortcut Trick

x2+1x2=ax^2 + \frac{1}{x^2}=a then, x1x=a2x-\frac{1}{x}=\sqrt{a}-2

so if x2+1x2=38x^2+\frac{1}{x^2}=38 then x1x=382=36=6x-\frac{1}{x}=\sqrt{38-2}=\sqrt{36}=6

x1x\left| {x - \frac{1}{x}} \right| =| 6 | = 6


Related Questions:

Project method is best suitable for:

If 2(a2+b2)=(a+b)22(a^2 + b^2) = (a + b)^2 then,

If a3+b3+c33abc=126,a^3 + b^3 + c^3 - 3abc = 126, a + b + c = 6, then the value of (ab + bc + ca) is:

x + 1 = 23 എങ്കിൽ 3x +1 എത്ര ?

The value of \6.35×6.35×6.35+3.65×3.65×3.6563.5×63.5+36.5×36.563.5×36.5\frac{6.35 \times 6.35 \times 6.35 + 3.65 \times 3.65 \times 3.65}{63.5 \times 63.5 + 36.5 \times 36.5 - 63.5 \times 36.5} is equal to