Challenger App

No.1 PSC Learning App

1M+ Downloads

If sinx=1237sinx=\frac{12}{37} , then what is the value of tan x?

A3537\frac{35}{37}

B3512\frac{35}{12}

C1235\frac{12}{35}

D3712\frac{37}{12}

Answer:

1235\frac{12}{35}

Read Explanation:

Solution:

Given:

sin x = 12/37

Formula:

(Hypotenuse)2 = (Base)2 + (Perpendicular)2

sin x = P/H

tan x = P/B

where, Hypotenuse = H, Base = B and Perpendicular = P

Calculation:

sin x = 12/37

⇒ P/H = 12/37

Hence, P = 12 and H = 37

Now,

372 = 122 + B2

⇒ 1369 = 144 + B2

⇒ B2 = 1369 - 144

⇒ B = √1225

⇒ B = 35

∴ tan x = 12/35


Related Questions:

image.png

The value of sin252+2+sin2384cos2435+4cos247\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}

Find (1 - cos² θ)(cot²θ + 1) - 1.
Express sin θ in terms of cot θ, where θ is an acute angle.

P and Q are the mid points of AB and AC respectively. R is a point on BC. Area of triangle PBR is 12 square centimeters and that of triangle QRC is 18 square centimeters what is the area of triangle PQR ?

WhatsApp Image 2024-11-30 at 14.09.43.jpeg