App Logo

No.1 PSC Learning App

1M+ Downloads

If sinx=1237sinx=\frac{12}{37} , then what is the value of tan x?

A3537\frac{35}{37}

B3512\frac{35}{12}

C1235\frac{12}{35}

D3712\frac{37}{12}

Answer:

1235\frac{12}{35}

Read Explanation:

Solution:

Given:

sin x = 12/37

Formula:

(Hypotenuse)2 = (Base)2 + (Perpendicular)2

sin x = P/H

tan x = P/B

where, Hypotenuse = H, Base = B and Perpendicular = P

Calculation:

sin x = 12/37

⇒ P/H = 12/37

Hence, P = 12 and H = 37

Now,

372 = 122 + B2

⇒ 1369 = 144 + B2

⇒ B2 = 1369 - 144

⇒ B = √1225

⇒ B = 35

∴ tan x = 12/35


Related Questions:

The value of cosec230sin245+sec260tan60cosec245sec260tan45\frac{{\rm cose{c^2}30^\circ {{\rm \sin }^2}45^\circ + {{\rm \sec }^2}60^\circ }}{{\rm tan60^\circ \rm cose{c^2}45^\circ - {{\rm \sec }^2}60^\circ \rm tan45^\circ }}  is:

Find the value of tan 8° tan 22° cot 60° tan 68° tan 82°

Find the area of the parallelogram with sides AB = 6, AC = 4, ∠ BAC = 60

1000114769.jpg
$cosec\theta=?$

If secθ=43=\frac{4}{3} , what is the value of tan2 θ + tan4 θ?