App Logo

No.1 PSC Learning App

1M+ Downloads

If x = 2⁸ and xx=2yx^x = 2^y, then find the value of 'y'.

A11

B242^4

C2642^{64}

D2112^{11}

Answer:

2112^{11}

Read Explanation:

x=28x = 2^8

xx=2yx^x = 2^y

(28)28(2^{8})^{2^8}

(am)n=a(m×n)(a^m)^n=a^{(m\times n)}

so

28×282^{8\times 2^8}= 2y2^y

y=8×28y=8\times 2^8

y=23×28y=2^3 \times 2^8

am×an=am+na^m\times a^n=a^{m+n}

y=211y=2^{11}


Related Questions:

(28)³ + (- 15)³ + (- 13)³ ന്റെ വില എത്ര ആയിരിക്കും?

3n=2187\sqrt{3^n} = 2187,  n -ന്റെ വില കാണുക?

image.png

(1)25+(1)50+(1)76(-1)^{25}+(-1)^{50} + (-1)^{76} = ____

12523×62514=? 125^ {\frac{2}{3}}\times 625^ {\frac{-1}{4}} =?