App Logo

No.1 PSC Learning App

1M+ Downloads

If x + y + z = 19, xyz = 216 and xy + yz + zx = 114, then the value of x3+y3+z3+xyz\sqrt{x^3+y^3+z^3+xyz} is.

A32

B28

C30

D35

Answer:

D. 35

Read Explanation:

Solution:

Given: 

x + y + z = 19

xyz = 216

xy + yz + xz = 114

Formula Used:

1.) (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + xz)

2.) x3 + y3 + z3 = 3(xyz) + (x + y +z ){(x2 + y2 + z2 – (xy + yz + xz)}

Calculations:

(x + y + z)= x2 + y2 + z2 + 2(xy + yz + xz)

⇒ (19)2 = x2 + y2 + z2 + 2(114)

⇒ x2 + y2 + z2 = (19)2 – 2(114)

⇒ x2 + y2 + z= 361 – 228 

⇒ x2 + y2 + z= 133

Now,

x3 + y3 + z3 = 3(xyz) + (x + y +z ){(x2 + y2 + z2 – (xy + yz + xz)}

⇒ x3 + y3 + z3 = 3(216) + (19)(133 – 114)

⇒ x3 + y3 + z3 = 648 + 19(19)

⇒ x3 + y3 + z3 = 648 + 361

⇒ x3 + y3 + z3 = 1,009

x3+y3+z3+xyz\sqrt{x^3+y^3+z^3+xyz}

(1,009+216)⇒ \sqrt{(1,009 + 216)}

1225⇒ \sqrt{1225} = 35

∴ The correct answer is 35


Related Questions:

f (a + b + c) = 12, and (a2 + b2 + c2) = 50, find the value of (a3 + b3 + c3 - 3abc)

8 രൂപ കൂടി കിട്ടിയാൽ രാജുവിന് 100 രൂപ തികയ്ക്കാമായിരുന്നു. എങ്കിൽ രാജ്യവിൻ്റെ കൈയ്യിൽ എത്ര രൂപയുണ്ട്?
If the sum and product of two numbers are respectively 40 and 375, then find the numbers

Is (x2)2+1=2x3(x-2)^2+1=2x-3 a quadratic equation, then find the roots

If a = 299, b = 298, c = 297 then the value of 2a3 + 2b3 + 2c3 – 6abc is: