If x=3−1 and y=3+1 then (x+y)2(x4−y4) is equal to ?
A439
B943
C3−43
D3−83
Answer:
3−83
Read Explanation:
Solution:
Given:
x = √3 - 1
y = √3 + 1
Formula used:
(x4 - y4) = (x - y) (x + y) (x2+ y2)
(x+y)2=x2+y2+2xy
Calculation:
(x=y)2(x4−y4)=x2+y2+2xy(x−y)(x+y)(x2+y2)
⇒x4 - y4 = [√3 - 1 - (√3 + 1)][√3 - 1 + √3 + 1] [(√3 + 1)2 + (√3 - 1)2] --------(1)
⇒ (x + y)2 = (√3 - 1)2 + (√3 + 1)2 + 2(√3 - 1)(√3 + 1) ---------(2)
On solving equation (1) and (2) separately we get:
x4 - y4 = -32√3
(x + y)2 = 12
⇒ (x+y)2x4−y4=12−323
⇒ 3−83
∴ The correct answer is 3−83.