App Logo

No.1 PSC Learning App

1M+ Downloads

If x=31x =\sqrt{3} - 1 and y=3+1y =\sqrt{3}+1 then (x4y4)(x+y)2\frac{(x^4-y^4)}{(x+y)^2} is equal to ?

A4394\sqrt{3}{9}

B943{9}{4\sqrt{3}}

C433\frac{-4\sqrt{3}}{3}

D833\frac{-8\sqrt{3}}{3}

Answer:

833\frac{-8\sqrt{3}}{3}

Read Explanation:

Solution:

Given:

x = √3 - 1

y = √3 + 1

Formula used:

(x4 - y4) = (x - y) (x + y) (x2+ y2)

(x+y)2=x2+y2+2xy(x+y)^2=x^2+y^2+2xy

Calculation:

(x4y4)(x=y)2=(xy)(x+y)(x2+y2)x2+y2+2xy\frac{(x^4-y^4)}{(x=y)^2}=\frac{(x-y)(x+y)(x^2+y^2)}{x^2+y^2+2xy}

⇒x4 - y= [√3 - 1 - (√3 + 1)][√3 - 1 + √3 + 1] [(√3 + 1)2 + (√3 - 1)2]  --------(1)

⇒ (x + y)2 = (√3 - 1)2 + (√3 + 1)2 + 2(√3 - 1)(√3 + 1)   ---------(2)

On solving equation (1) and (2) separately we get:

x4 - y4 = -32√3

(x + y)2 = 12

x4y4(x+y)2=32312\frac{x^4-y^4}{(x+y)^2}=\frac{-32\sqrt{3}}{12}

833\frac{-8\sqrt{3}}{3}

∴ The correct answer is 833\frac{-8\sqrt{3}}{3}


Related Questions:

If S = 3T/2, then express 'T' as a percentage of S + T.
If the sum and product of two numbers are respectively 40 and 375, then their difference is

If x4+1x4=25716x^4+\frac{1}{x^4}=\frac{257}{16} then find 813(x3+1x3)\frac{8}{13}(x^3+\frac{1}{x^3}), where x>0.

If p : q = r : s , s = 4p² and 2qr = 64, then find the value of 2p + 3s

Is (x2)2+1=2x3(x-2)^2+1=2x-3 a quadratic equation, then find the roots