App Logo

No.1 PSC Learning App

1M+ Downloads

If x=31x =\sqrt{3} - 1 and y=3+1y =\sqrt{3}+1 then (x4y4)(x+y)2\frac{(x^4-y^4)}{(x+y)^2} is equal to ?

A4394\sqrt{3}{9}

B943{9}{4\sqrt{3}}

C433\frac{-4\sqrt{3}}{3}

D833\frac{-8\sqrt{3}}{3}

Answer:

833\frac{-8\sqrt{3}}{3}

Read Explanation:

Solution:

Given:

x = √3 - 1

y = √3 + 1

Formula used:

(x4 - y4) = (x - y) (x + y) (x2+ y2)

(x+y)2=x2+y2+2xy(x+y)^2=x^2+y^2+2xy

Calculation:

(x4y4)(x=y)2=(xy)(x+y)(x2+y2)x2+y2+2xy\frac{(x^4-y^4)}{(x=y)^2}=\frac{(x-y)(x+y)(x^2+y^2)}{x^2+y^2+2xy}

⇒x4 - y= [√3 - 1 - (√3 + 1)][√3 - 1 + √3 + 1] [(√3 + 1)2 + (√3 - 1)2]  --------(1)

⇒ (x + y)2 = (√3 - 1)2 + (√3 + 1)2 + 2(√3 - 1)(√3 + 1)   ---------(2)

On solving equation (1) and (2) separately we get:

x4 - y4 = -32√3

(x + y)2 = 12

x4y4(x+y)2=32312\frac{x^4-y^4}{(x+y)^2}=\frac{-32\sqrt{3}}{12}

833\frac{-8\sqrt{3}}{3}

∴ The correct answer is 833\frac{-8\sqrt{3}}{3}


Related Questions:

The value of \6.35×6.35×6.35+3.65×3.65×3.6563.5×63.5+36.5×36.563.5×36.5\frac{6.35 \times 6.35 \times 6.35 + 3.65 \times 3.65 \times 3.65}{63.5 \times 63.5 + 36.5 \times 36.5 - 63.5 \times 36.5} is equal to

If xy = 16 and x2 + y2 = 32, then the value of (x + y) is:

If m and n are positive integers and 4m + 9n is a multiple of 11, which of the following is also a multiple of 11?

If x2+1/x2=79x ^ 2 + 1 / x ^ 2 = 79 find the value of x+1/xx + 1 / x

If x479x2+1=0x^4-79x^2+1=0then the value of x+x1x+x^{-1} can be;