App Logo

No.1 PSC Learning App

1M+ Downloads

In the figure <CAB=30°, <CPB=60°. AP 10 centimeters. Area of the rectangle ABCD is.............................. square centimeters.

WhatsApp Image 2024-11-30 at 10.23.08.jpeg

A25(2+√3)

B25 (1+√3)

C75

D75√3

Answer:

D. 75√3

Read Explanation:

In △ APC

∠ APC = 180° - 60° = 120°

So ∠ACP = 180° - (120 + 30 ) = 30°

Triangle APC is an isosceles triangle

So AP = PC = 10 cm

In △ PBC

∠ PBC = 90°

∠ BPC = 60°

∠ PCB = 30°

Ratio 30° : 60° : 90° = 1 : 3 : 2

PC = 2 = 10cm

PB = 1 = 5

BC = 5√3

So,

AB = 15 cm

BC = 5√3

Area of ABCD = length × breadth

= 15 × 5√3

= 75√3 cm²


Related Questions:

If cot A = tan(2A - 45°), A is an acute angle then tan A is equal to:
image.png

Find the value of tan60tan151+tan60tan15\dfrac{\tan 60^\circ - \tan 15^\circ}{1 + \tan 60^\circ \tan 15^\circ}

If sec3x = cosec(3x - 45°), where 3x is an acute angle, then x is equal to:

Find the value of Sec (-30o)+tan(-60o)