IOf tanθ=2120, then the Value of Sinθ+CosθSinθ−Cosθ
A41−1
B3529
C2127
D31−29
Answer:
41−1
Read Explanation:
Solution: Given: tan θ = 20/21 Formula: If x/y = a/b, then Dividendo and Componendo (x + y)/(x - y) = (a + b)/(a - b) Calculation: tan θ = 20/21 ⇒ sin θ/cosθ = 20/21 Dividendo and Componendo ⇒ (sin θ + cos θ)/(sin θ - cos θ) = (20 + 21)/(20 - 21) ⇒ (sin θ + cos θ)/(sin θ - cos θ) = 41/(-1) ∴ (sin θ - cos θ)/(sin θ + cos θ) = -1/41