limx→0eax−ebxx=\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{x}=limx→0xeax−ebx= Aa-bBa+bCab²Da³-b³Answer: A. a-b Read Explanation: limx→0eax−ebxx=\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{x}=limx→0xeax−ebx=Applying L Hospitals rule=limx→0(eax×a)−(ebx×b)1==\lim_{x \to 0} \frac{(e^{ax} \times a) - (e^{bx} \times b)}{1}==limx→01(eax×a)−(ebx×b)==ae0−be0=ae^0 - be^0=ae0−be0 =a−b=a-b=a−b Read more in App