limx→0sin(ax)bx=\lim_{x \to 0} \frac{sin (ax)}{bx} =limx→0bxsin(ax)= Aa/bBb/aCaDbAnswer: A. a/b Read Explanation: limx→0sin(ax)bx\lim_{x \to 0} \frac{sin (ax)}{bx} limx→0bxsin(ax)=limx→0sin(ax)ax×ab=\lim_{x \to 0} \frac{sin (ax)}{ax} \times \frac{a}{b}=limx→0axsin(ax)×ba=1×ab=ab= 1 \times \frac{a}{b}= \frac{a}{b}=1×ba=ba Read more in App