limx→0sin3x−sinxxlim_{x \to 0} \frac{sin3x - sinx}{x}limx→0xsin3x−sinx A0B2C1D4Answer: B. 2 Read Explanation: limx→0sin3x−sinxxlim_{x \to 0} \frac{sin3x - sinx}{x}limx→0xsin3x−sinx=limx→0sin3xx−limx→0sinxx=\lim_{x \to 0} \frac{sin 3x}{x} - \lim_{x \to 0}\frac{sinx}{x}=limx→0xsin3x−limx→0xsinx=limx→03sin3x3x−limx→0sinxx=\lim_{x \to 0} 3\frac{sin 3x}{3x} - \lim_{x \to 0}\frac{sinx}{x}=limx→033xsin3x−limx→0xsinx[limx→0sinxx=1][\lim_{x \to 0} \frac {sin x}{x} = 1][limx→0xsinx=1]=3×1−1=2= 3 \times 1 - 1 = 2=3×1−1=2 Read more in App