Challenger App

No.1 PSC Learning App

1M+ Downloads

limx0xsin(x)x3=\lim_{x \to 0} \frac{x - sin(x)}{x^3}=

A1/2

B1/3

C1/6

D-1/6

Answer:

C. 1/6

Read Explanation:

limx0xsin(x)x3=\lim_{x \to 0} \frac{x - sin(x)}{x^3}=

applying L Hospitals rule

limx0xsin(x)x3=limx01cos(x)3x2=limx0sin(x)6x\lim_{x \to 0} \frac{x - sin(x)}{x^3}=\lim_{x \to 0} \frac{1 - cos(x)}{3x^2}= \lim_{x \to 0} \frac{sin(x)}{6x}

=16limx0sin(x)x=16×1=16=\frac{1}{6} \lim_{x \to 0} \frac {sin(x)}{x} = \frac{1}{6} \times 1= \frac{1}{6}


Related Questions:

$y=x^{20} ; \frac{d^2y}{dx^2}= ?

limxln(x)2(x1/2)=\lim_{x \to ∞}\frac {ln(x)}{2(x^{1/2})}=

sin2x ന്ടെ Maclaurian Series വിപുലീകരണത്തിൽ x³ -ന്ടെ ഗുണാങ്കം ഏത് ?

x=asin1t,y=acos.1tx=\sqrt{a^{sin^{-1}t}} , y=\sqrt{a^{cos^{-.1}t}}dy/dx=?

If A is a symmetric matrix, then adj A is