limx→0x−sin(x)x3=\lim_{x \to 0} \frac{x - sin(x)}{x^3}=limx→0x3x−sin(x)= A1/2B1/3C1/6D-1/6Answer: C. 1/6 Read Explanation: limx→0x−sin(x)x3=\lim_{x \to 0} \frac{x - sin(x)}{x^3}=limx→0x3x−sin(x)=applying L Hospitals rulelimx→0x−sin(x)x3=limx→01−cos(x)3x2=limx→0sin(x)6x\lim_{x \to 0} \frac{x - sin(x)}{x^3}=\lim_{x \to 0} \frac{1 - cos(x)}{3x^2}= \lim_{x \to 0} \frac{sin(x)}{6x}limx→0x3x−sin(x)=limx→03x21−cos(x)=limx→06xsin(x)=16limx→0sin(x)x=16×1=16=\frac{1}{6} \lim_{x \to 0} \frac {sin(x)}{x} = \frac{1}{6} \times 1= \frac{1}{6}=61limx→0xsin(x)=61×1=61 Read more in App