limx→∞ln(x)2(x1/2)=\lim_{x \to ∞}\frac {ln(x)}{2(x^{1/2})}=limx→∞2(x1/2)ln(x)= A1B0C-2D1/2Answer: B. 0 Read Explanation: limx→∞ln(x)2(x1/2)\lim_{x \to ∞}\frac {ln(x)}{2(x^{1/2})}limx→∞2(x1/2)ln(x)=limx→∞1/x2×12(x)1/2=\lim_{x \to ∞} \frac{1/x}{2 \times \frac{1}{2{(x)}^{1/2}}}=limx→∞2×2(x)1/211/x=limx→∞1x×x1/21=\lim_{x \to ∞} \frac{1}{x} \times \frac{x^{1/2}}{1}=limx→∞x1×1x1/2=limx→∞1x1/2=0=\lim_{x \to ∞} \frac{1}{x^{1/2}} = 0=limx→∞x1/21=0 Read more in App