X ന്ടെ വ്യതിയാനം കാണുക. A2B1/9C2/9D9/2Answer: C. 2/9 Read Explanation: വ്യതിയാനം V(X)V(X)=E(X2)−[E(X)]2V(X) = E(X^2) - [E(X)]^2V(X)=E(X2)−[E(X)]2മാധ്യം = E(X)E(X)=∫02xf(x)dxE(X)= \int_0^2 xf(x)dxE(X)=∫02xf(x)dx=∫02xx2dx=12∫x2dx=\int_0^2 x\frac{x}{2} dx = \frac{1}{2}\int x^2dx=∫02x2xdx=21∫x2dx=12[x33]02=\frac{1}{2}[\frac{x^3}{3}]_0^2=21[3x3]0212×83=43\frac{1}{2} \times \frac{8}{3} = \frac{4}{3}21×38=34E(X2)=∫02x2f(x)dxE(X^2) = \int_0^2 x^2f(x)dxE(X2)=∫02x2f(x)dx=∫02x2x2dx=\int_0^2 x^2\frac{x}{2}dx=∫02x22xdx=12∫02x3dx=\frac{1}{2}\int_0^2x^3dx=21∫02x3dx=12[x44]02=\frac{1}{2}[\frac{x^4}{4}]_0^2=21[4x4]02=12×244=2=\frac{1}{2} \times \frac{2^4}{4} = 2=21×424=2V(X)=E(X2)−[E(X)]2=2−(432)=29V(X)= E(X^2) - [E(X)]^2 = 2 - (\frac{4}{3}^2) = \frac{2}{9}V(X)=E(X2)−[E(X)]2=2−(342)=92 Read more in App