App Logo

No.1 PSC Learning App

1M+ Downloads

The least value of 8 cosec2θ + 25 sin2 θ is:

A10210\sqrt{2}

B40240\sqrt{2}

C20220\sqrt{2}

D30230\sqrt{2}

Answer:

20220\sqrt{2}

Read Explanation:

Solution:

Given:

8 cosec2θ + 25 sin2 θ

Formula:

The minimum value of "a cosec2θ + b sin2 θ" is given by 2ab2\sqrt{ab}

Calculation:

Minimum Value of 8 cosec2θ + 25 sin2 θ =2(8×25)=2\sqrt{(8\times{25}})

=2200=2\sqrt{200}

=2(100×2)=2\sqrt{(100\times{2}})

=2×102=2\times{10}\sqrt{2}

=202=20\sqrt{2}


Related Questions:

Find the value of tan 8° tan 22° cot 60° tan 68° tan 82°

what is the ratio sides of the triangle

1000114738.jpg

What is the value of sin2 45° + cos2 45° ?

Find the value of

Sin0o×sin1o×sin2o×sin30...............Sin890isSin0^o\times{sin1^o}\times{sin2^o}\times{sin3^0}...............Sin89^0 is

A triangle is to be drawn with one side 6cm and an angle on it is 45 what should be the minimum length of the side opposiste to this angle?