Challenger App

No.1 PSC Learning App

1M+ Downloads
Find the value of tan 8° tan 22° cot 60° tan 68° tan 82°

A3\sqrt{3}

B1

C2/3\frac{2}{/\sqrt{3}}

D13\frac{1}{\sqrt{3}}

Answer:

13\frac{1}{\sqrt{3}}

Read Explanation:

Solution: CONCEPT: Here we need to recall the formulae of trigonometric Identities. FORMULAE USED: tan (90° – A) = cot A cot A = 1/tan A CALCULATION: tan 8° tan 22° cot 60° tan 68° tan 82° Considering the given statement Tan (90° – 82°) tan(90° – 68°) cot 60° tan 68° tan 82° ⇒ cot 82° cot 68° cot 60° tan 68° tan 82° ⇒ cot 60° = 1/√3 ∴ tan 8° tan 22° cot 60° tan 68° tan 82° = 1/√3


Related Questions:

When the sun is at an elevation of 45°, the length of the shadow of a tree is 15meters. Then the height of the tree (in metres) is :

Find the value of cot2θcos2θ\sqrt{cot^2\theta-cos^2\theta}.

image.png
If 4θ is an acute angle, and cot 4θ = tan (θ - 5°) , then what is the value of θ?

figure shows a triangle and its circumcircle what is the radius of the circle

1000115094.jpg

AC = 9cm, angle ABC= 60°