App Logo

No.1 PSC Learning App

1M+ Downloads

The ratio of the number of boys in schools A and of B is 5 ∶ 7 and the ratio of the total number of students in A and B is 3 ∶ 4. If the number of girls in B is equal to 6623\frac{2}{3} % of the total students in B, then what is the ratio of the number of girls in A and B?

A43 ∶ 46

B8 ∶ 11

C43 ∶ 56

D33 ∶ 56

Answer:

A. 43 ∶ 46

Read Explanation:

Given:

The ratio of the number of boys in schools A and of B is 5 ∶ 7 and the ratio of the total number of students in A and B is 3 ∶ 4.

The number of girls in B is equal to 662323% of the total students in B.

Calculation:

 

Section A

Section B

Boys

5x

7x

Total

Students

3y

4y

Number of girls in B = Total students - Boys

Number of girls in B = (4y - 7x)

Similarly,

Number of girls in A = (3y - 5x)

According to the question,

(4y - 7x) = 4y×2003\times\frac{200}{3} %

⇒ (4y - 7x) = 4y×23\times\frac{2}{3}

⇒ 12y - 21x = 8y

⇒ 4y = 21x

⇒ y = 5.25x      -----(1)

Now, the ratio of the number of girls in A and B

⇒ (3y - 5x) : (4y - 7x)

⇒ (15.75x - 5x) : (21x - 7x)          [From equation (1)]

⇒ 10.75x : 14x

⇒ 43 : 56

∴  The ratio of the number of girls in A and B is 43 : 56.


Related Questions:

ഒരു ചതുരക്കട്ടയുടെ നീളവും വീതിയും ഉയരവും യഥാക്രമം 3:5:8 എന്ന അംശബന്ധത്തി ലാണ്. അതിന്റെ ഉപരിതലവിസ്‌തീർണ്ണം 1422 cm ആയാൽ ചതുരക്കട്ടയുടെ ഉയരം എത്ര യായിരിക്കും?
A, B and C invested capital in the ratio 5 : 7 : 4, the timing of their investments being in the ratio x : y : z. If their profits are distributed in the ratio 45 : 42 : 28, then x : y : z = ?
The income of three people are in the ratio 3 : 4 : 6. If their income is increased by 10%, 20% and 15% respectively. Find the ratio of their new income.
A : B =7:9 , B:C = 3:5 ആയാൽ A:B:C =?
90 സെന്റിമീറ്റർ മുതൽ 1.5 മീറ്റർ വരെ അനുപാതം കണ്ടെത്തുക.