App Logo

No.1 PSC Learning App

1M+ Downloads

What is the area of rhombus (in cm2) whose side is 10 cm and the shorter diagonal is 12 cm?

A60

B96

C48

D192

Answer:

B. 96

Read Explanation:

Solution:

Given:

The side of rhombus is 10 cm and its diagonal is 12 cm.

image.png

Formula Used:

1. Area of triangle =s(sa)(sb)(sc)=\sqrt {s(s-a)(s-b)(s-c)}

Where s = semi perimeter & a, b, and c are sides of the triangle

2. Area of rhombus (ABCD) = 2 × Area of Triangle 

Calculation:

Area of ABC=s(sa)(sb)(sc)\triangle{ABC}=\sqrt {s(s-a)(s-b)(s-c)}

Semi perimeter of Δ ABC (s) =(10+10+12)2= \frac{(10 + 10 + 12)}{2}

Semi perimeter of Δ ABC (s) = 16

Area of ABC=16(1610)(1610)(1612)\triangle{ABC}=\sqrt {16(16-10)(16-10)(16-12)}

Area of ABC=16×6×6×4=48cm2\triangle{ABC}=\sqrt {16 × 6 × 6 × 4}=48cm^2

Area of rhombus (ABCD) = 2 × Area of Triangle = 96 cm2

∴ The area of rhombus is 96 cm2.


Related Questions:

വക്കുകളുടെയെല്ലാം നീളം 6 സെ. മീ. ആയ ഒരു സമ ചതുരക്കട്ടയിൽ നിന്ന് ചെത്തിയെടുക്കാവുന്ന ഏറ്റവും വലിയ ഗോളത്തിന്റെ വ്യാപ്തം എത്ര ?
The ratio of sides of a triangle is 3:4:5 and area of the triangle is 72 square unit. Then the area of an equilateral triangle whose perimeter is same as that of the previous triangle is
ഒരു ക്യൂബിന്റെ വക്കിന് 6 സെ. മീ. നീളമുണ്ടെങ്കിൽ വ്യാപ്തം എത്ര ?

If the side of a square is 12(x+1)\frac{1}{2} (x + 1) units and its diagonal is 3x2\frac{3-x}{\sqrt{2}}units, then the length of the side of the square would be

If the perimeters of a rectangle and a square are equal and the ratio of two adjacent sides of the rectangle is 1 : 2 then the ratio of area of the rectangle and that of the square is