App Logo

No.1 PSC Learning App

1M+ Downloads
The ratio of sides of a triangle is 3:4:5 and area of the triangle is 72 square unit. Then the area of an equilateral triangle whose perimeter is same as that of the previous triangle is

A323squnits32\sqrt{3}squnits

B483squnits48\sqrt{3}squnits

C96 squnits

D603squnits60\sqrt{3}squnits

Answer:

483squnits48\sqrt{3}squnits

Read Explanation:

Sides of triangle

Let 3x, 4x and 5x units

Here, (3x)2 + (4x)2 = (5x)2

It is a right angled triangle.

Now, Area of triangle =12×3x×4x=6x2=\frac{1}{2}\times{3x}\times{4x}=6x^2

6x2=726x^2=72

=>x^2=12

=>x=\sqrt{12}=2\sqrt{3}

Perimeter of right angled triangle =3x+4x+5x=12x=12×23=243units= 3x + 4x + 5x = 12x = 12 × 2 \sqrt{3}= 24 \sqrt{3} units

Perimeter of equilateral triangle =243units= 24\sqrt{3} units

Its side =2433=83units=\frac{24\sqrt{3}}{3}=8\sqrt{3}units

Area=34×(side)2Area =\frac{\sqrt {3}}{4}\times{(side)^2}

=34×83×83=\frac{\sqrt{3}}{4}\times{8\sqrt{3}}\times{8\sqrt{3}}

=16×33=16\times{3}\sqrt{3}

=483=48\sqrt{3} sq.units


Related Questions:

Radius of a circular wheel is 21 cm. Find the number of revolutions done by wheel to cover the distance of 924 m.

If the side of a square is 12(x+1)\frac{1}{2} (x + 1) units and its diagonal is 3x2\frac{3-x}{\sqrt{2}}units, then the length of the side of the square would be

The area of a circle is equal to its circumference. What is its diameter?
ഒരു ഗോളത്തിന്റെ ആരം 16 സെമീ ആണെങ്കിൽ അത് ഉരുക്കി 4 സെമീ ആരം വരുന്ന ഒരു ഗോളത്തിലേക്ക് പുനർനിർമിക്കുന്നു. പുനർനിർമിച്ച ചെറിയ ഗോളങ്ങളുടെ എണ്ണം കണ്ടെത്തുക.
ഒരു സമചതുരത്തിന്റെ ഓരോ വശവും 10% വർദ്ധിപ്പിച്ചാൽ പരപ്പളവിന്റെ വർദ്ധനവ്