App Logo

No.1 PSC Learning App

1M+ Downloads

What is the remainder when 21252^{125} is divided by 11?

A7

B10

C8

D6

Answer:

B. 10

Read Explanation:

=212511=\frac{2^{125}}{11}

=(25)2511=\frac{(2^5)^{25}}{11}

=322511=\frac{32^{25}}{11}

Remainder when ‘32’ is divided by ‘11’ = 10

Now,

=(32)2511=\frac{(32)^{25}}{11}

=(1024×10)11=\frac{(10^{24}\times{10})}{11}

=((102411)×(1011)=(\frac{(10^{24}}{11})\times(\frac{10}{11})

=(102)1211×1011=\frac{(10^2)^{12}}{11}\times\frac{10}{11}

=(102)1211×1011=\frac{(10^2)^12}{11}\times\frac{10}{11}

=(1001211×1011=\frac{(100^{12}}{11}\times\frac{10}{11}

Remainder when ‘100’ is divided by ‘11’ = 1

Now,

=11211×1011=\frac{1^{12}}{11}\times{10}{11}

111×1011\frac{1}{11}\times\frac{10}{11}

=(1×10)11=\frac{(1\times{10})}{11}

Hence, required remainder = 10

Alternate method:

Using Euler's Method,

To find the remainder when 2125 by 11, we have to find the Euler's number of 11.

We know that the Euler number of any prime number (n) is (n - 1).

Euler's number of 11 is 10.

When we divide 125 by 10 then we got remainder 5.

25 = 32

Now divide 32 by 11 and find the remainder.

When we divide 32 by 11 then the remainder is 10.


Related Questions:

What is the largest 5-digit number exactly divisible by 999?
What is the greatest number which, when it divides 2987, 3755 and 4331, leaves a remainder of 11 in each case?
അഞ്ചു കുറച്ചാൽ 6 , 9, 10, 18 എന്നിവ കൊണ്ട് നിശേഷം ഹരിക്കാൻ കഴിയുന്ന ഏറ്റവും വലിയ മൂന്നക്ക സംഖ്യ?
For what value of 'K' is the number 6745K2 divisible by 9?
What should be subtracted from 32575 to make it exactly divisible by 9?