The area of an equilateral triangle is 93m29\sqrt{3} m^293m2 . The length (in m) of the median is A23m2\sqrt{3}m23mB33m3\sqrt{3}m33mC32m3\sqrt{2}m32mD22m2\sqrt{2}m22mAnswer: 33m3\sqrt{3}m33m Read Explanation: 34×(side)2=93\frac{\sqrt{3}}{4}\times{(side)^2}=9\sqrt{3}43×(side)2=93=>Side^2=9\times{4}=36=>side=\sqrt{36}=6metreBD=3metreBD=3metreBD=3metreAD=AB2−BD2=62−32AD=\sqrt{AB^2-BD^2}=\sqrt{6^2-3^2}AD=AB2−BD2=62−32=36−9=27=\sqrt{36-9}=\sqrt{27}=36−9=27=33metre=3\sqrt{3}metre=33metre Read more in App