The diagonal of a square A is (a+b). The diagonal of a square whose area is twice the area of square A, isA2 (a+b)B2(a+b)22 (a+b)^22(a+b)2C2(a+b)\sqrt{2}(a+b)2(a+b)D2(a−b)\sqrt{2}(a-b)2(a−b)Answer: 2(a+b)\sqrt{2}(a+b)2(a+b) Read Explanation: Area of the square A =(diagonal)22=\frac{(diagonal)^2}{2}=2(diagonal)2=(a+b)22=\frac{(a+b)^2}{2}=2(a+b)2Area of the new square ==(a+b)22×2=(a+b)2==\frac{(a+b)^2}{2}\times{2}=(a+b)^2==2(a+b)2×2=(a+b)2=>Side=(a+b)Diagonal=2×sideDiagonal=\sqrt{2}\times{side}Diagonal=2×side=2(a+b)=\sqrt{2}(a+b)=2(a+b) Read more in App