App Logo

No.1 PSC Learning App

1M+ Downloads

ക്രമം 2 ആയ ഒരു സമചതുര മാട്രിക്സ് A യിൽ, A(adjA)=[10  00  10]A(adj A) = \begin{bmatrix} 10 \ \ 0 \\ 0 \ \ 10 \end{bmatrix} ആണെങ്കിൽ |A|-യുടെ വിലയെന്ത്?

A20

B100

C10

D0

Answer:

C. 10

Read Explanation:

A(adjA)=AIA(adj A) = |A|I

A(adjA)=[10  00  10]=AI=10×[1  00  1]A(adj A) = \begin{bmatrix} 10 \ \ 0 \\ 0 \ \ 10 \end{bmatrix} =|A|I= 10 \times \begin{bmatrix}1\ \ 0 \\ 0 \ \ 1 \end{bmatrix}

A=10|A|=10


Related Questions:

2a+b+3c =5 3a+c= -4 a+2b+5c=14 എന്ന സമവാക്യ കൂട്ടത്തിന്റെ പരിഹാരങ്ങളെ കുറിച്ച ശരിയായത് ഏത്?
A ഒരു 3x 3 സമചതുര മാട്രിക്സും സാരണി 4ഉം ആയാൽ |adj(adjA)|=

[3   0   26   1   1 2   8  91][xyz]=[000]\begin{bmatrix} 3 \ \ \ 0 \ \ \ 2 \\ 6 \ \ \ 1 \ \ \ 1 \\ \ 2 \ \ \ 8 \ \ 91 \end{bmatrix} \begin{bmatrix}x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0\\ 0 \end{bmatrix}

എന്ന സമവാക്യ കൂട്ടത്തിന്റെ പരിഹാരങ്ങൾ?

3x ≡ 4(mod 5)ന് എത്ര incongruent പരിഹാരങ്ങൾ ഉണ്ട്?
ക്രമം 3 ആയ സിംഗുലാർ അല്ലാത്ത മാട്രിക്സ് ആണ് A എങ്കിൽ |adjA|=