Challenger App

No.1 PSC Learning App

1M+ Downloads
(tan57° + cot37°)/ (tan33° + cot53° ) =?

Asin53° + cos33°

Btan53°× tan57

Csin53° × sin57°

Dcos57° × cos53°

Answer:

B. tan53°× tan57

Read Explanation:

Solution: Given: (tan57° + cot37°)/ (tan33° + cot53°) We know cot(A) = tan(90-A)​ So, [tan 33° = cot 57° and cot37° = tan 53° ] ⇒ (tan57° + tan 53°) / (cot 57° + cot 53°) ⇒ (tan57° + tan 53°) / (1/tan 57° + 1/tan 53°) ⇒ (tan57° + tan53°) / {(tan53° + tan57°)/tan53°× tan57°} ⇒ tan53° × tan57°


Related Questions:

Given that 4tanA = 3 , then the value of4sinAcosA4sinA+cosA\frac{4sinA-cosA}{4sinA+cosA} is

Which among the following statement is true in the figure?

WhatsApp Image 2024-12-02 at 17.51.32.jpeg

Find cos4Asin4A.cos^4 A - sin^4 A.

cotθ=?cot\theta=?

The value of sin (60 + θ) - cos (30 - θ) is