Given:σ x = 120 M P a \sigma_{x} = 120 MPa σ x = 120 MP a , τ x y = 60 M P a \tau_{xy} =60 MPa τ x y = 60 MP a , S y t = 340 M P a S_{yt} =340 MPa S y t = 340 MP a ; S y s = S y t 2 S_{ys} =\frac{S_{yt}}{ 2} S ys = 2 S y t =340 2 = 170 M P a \frac{ 340}{ 2} =170 MPa 2 340 = 170 MP a
σ 1 , 2 = ( σ x + σ y 2 ) ± 1 2 ( σ x − σ y ) 2 + 4 τ x y 2 \sigma{ 1, 2} =(\frac{\sigma_x + \sigma_y}{2}) \pm \frac 12 \sqrt{(\sigma_x - \sigma_y )^ 2 +4 \tau_{xy} ^ 2} σ 1 , 2 = ( 2 σ x + σ y ) ± 2 1 ( σ x − σ y ) 2 + 4 τ x y 2 ⇒ \Rightarrow ⇒
σ 1 , 2 = 120 2 ± 1 2 ( 120 ) 2 + 4 × 6 0 2 \sigma_{1, 2} =\frac{120}{2} \pm \frac 12 \sqrt{ (120)^ 2 +4\times 60^ 2} σ 1 , 2 = 2 120 ± 2 1 ( 120 ) 2 + 4 × 6 0 2 =144.85,-24.85< / p > < p s t y l e = " c o l o r : r g b ( 0 , 0 , 0 ) ; m a r g i n − t o p : 2 p x ; m a r g i n − b o t t o m : 2 p x " d a t a − p x y = " t r u e " > a n d </p><p style="color: rgb(0,0,0); margin-top: 2px; margin-bottom: 2px" data-pxy="true">and < / p >< p s t y l e = " co l or : r g b ( 0 , 0 , 0 ) ; ma r g in − t o p : 2 p x ; ma r g in − b o tt o m : 2 p x " d a t a − p x y = " t r u e " > an d \tau_{max} = \frac{\sigma_1 - \sigma_2}{2} =\frac {144.85-(-24.85)}{ 2} =84.85 MPa; < / p > < p s t y l e = " c o l o r : r g b ( 0 , 0 , 0 ) ; m a r g i n − t o p : 2 p x ; m a r g i n − b o t t o m : 2 p x " d a t a − p x y = " t r u e " > F o r t h e f a c t o r o f s a f e t y , ; </p><p style="color: rgb(0,0,0); margin-top: 2px; margin-bottom: 2px" data-pxy="true">For the factor of safety, ; < / p >< p s t y l e = " co l or : r g b ( 0 , 0 , 0 ) ; ma r g in − t o p : 2 p x ; ma r g in − b o tt o m : 2 p x " d a t a − p x y = " t r u e " > F or t h e f a c t oro f s a f e t y , \tau_{max} \le \frac{S_{ys}}{N} 84.85 \le \frac{170}{N} N \le2 \Rightarrow N=2$