Sum of squares of n even numbers
22+42+62+82+....++(2n)2
Σ(2n)2=32n(n+1)(2n+1)
Sum of squares of n odd numbers
1²+3²+5² + .......+(2n-1)²
Σ(2n−1)2=3n(2n+1)(2n−1)
12−22+32−42+....+992−1002
=(12+32+..992)−(22+42+...+1002)
Number of odd = 50 and number of even = 50
sum of squares of odd=3n(2n+1)(2n−1)
=350(2×50+1)(2×50−1)=350×101×99
=166650
sum of squares of even = 32n(n+1)(2n+1)
=32×50(50+1)(2×50+1)=3100(51)(101)=100(17)(101)
=171700
(12+32+..992)−(22+42+...+1002)=166650−171700=−5050