App Logo

No.1 PSC Learning App

1M+ Downloads
There are 3 students in a group. If the weight of any student is added to the average weight of the other two the sums received are 48 kg, 52 kg, and 59 kg. The average weight (in kg) of the three students is:

A27

B26.5

C27.5

D28

Answer:

B. 26.5

Read Explanation:

Solution: Given: The weight of any student is added to the average weight of the other two the sums received are 48 kg, 52 kg, and 59 kg. Formula used: Average = Sum of all the values/Total number value Calculation: Let the weight (in kg) of the three students is x, y and z According to the question: [x + (y + z)/2] = 48 ⇒ (2x + y + z) = 96 ----(1) Again, [y + (x + z)/2] = 52 ⇒ (2y + x + z) = 104 ----(2) Now, [z + (x + y)/2] = 59 ⇒ (2z + x + y) = 118 ----(3) Multiply by 2 in equation (1); ⇒ (2x + y + z) × 2 = 96 × 2 ⇒ (4x + 2y + 2z) = 192 ----(4) Now, Subtracting from equation(4) to equation(2): [(4x + 2y + 2z) – (2y + x + z)] = (192 – 104) ⇒ [(4x + 2y + 2z – 2y – x – z)] = 88 ⇒ (3x + z) = 88 ----(a) Multiply by 2 in equation (3): ⇒ (2z + x + y) × 2 = 118 × 2 ⇒ 4z + 2x + 2y = 236 ----(5) Now, Subtracting from equation(5) to equation(2): [(4z + 2x + 2y) – (2y + x + z)] = 236 – 104 ⇒ x + 3z = 132 ----(b) Multiply by 3 in equation (a): ⇒ (3x + z) × 3 = 88 × 3 ⇒ (9x + 3z) = 264 ----(c) Now, Subtracting from equation(c) to equation(b) ⇒ [(9x + 3z) – (x + 3z)] = 264 – 132 = 132 ⇒ [9x + 3z – x – 3z] = 132 ⇒ 8x = 132 ⇒ x = 132/8 = 16.5 From equation (b): ⇒ (3x + z) = 88 ⇒ (3 × 16.5 + z) = 88 ⇒ 49.5 + z = 88 ⇒ z = 88 – 49.5 = 38.5 Putting the value of x and z in equation(1): (2 × 16.5 + y + 38.5) = 96 ⇒ 33 + y + 38.5 = 96 ⇒ y = (96 – 71.5) = 24.5 Average = (x + y + z)/3 ⇒ (16.5 + 24.5 + 38.5)/3 ⇒ 79.5/3 = 26.5 ∴ The average weight (in kg) of the three students is 26.5. Alternate Method: Given: The weight of any student is added to the average weight of the other two the sums received are 48 kg, 52 kg, and 59 kg. Formula used: Average = Sum of all the values/Total number value Calculation: Let the weight (in kg) of the three students is x, y and z According to the question: [x + (y + z)/2] = 48 ⇒ (2x + y + z) = 96 ----(1) Again, [y + (x + z)/2] = 52 ⇒ (2y + x + z) = 104 ----(2) Now, [z + (x + y)/2] = 59 ⇒ (2z + x + y) = 118 ----(3) Adding equation(1),equation(2) and equation(3); ⇒ (2x + y + z) + (2y + x + z) + (2z + x + y) = (96 + 104 + 118) ⇒ (4x + 4y + 4z) = 318 ⇒ 4(x + y + z) = 318 ⇒ (x + y + z) = 318/4 = 159/2 Now, Average = (x + y + z)/3 ⇒ [159/(2 × 3)] ⇒ 159/6 = 26.5 ∴ The average weight (in kg) of the three students is 26.5.


Related Questions:

The average age of A, B and C is 26 years. If the average age of A and C is 29 years. What is the age of B in years?
മൂന്നിന്റെ ആദ്യത്തെ അഞ്ച് ഗുണിതങ്ങളുടെ ശരാശരി എത്ര?
The average age of 16 students in a college is 20. Out of them, the average age of 5 students is 20 and the average age of the other 10 students is 20.4. Find the age of the 16th college student.
22, 27, 23, 28, 32, x എന്നീ സംഖ്യകളുടെ ശരാശരി 28 ആണ്. എങ്കിൽ x-ൻറ വിലയെത്ര?
In a class there are total 70 students. The average weight of 26 girls is 28 kg and average weight of the remaining students is 35 kg. What will be the average weight (in kg) of all 70 students?