Challenger App

No.1 PSC Learning App

1M+ Downloads
There are 3 students in a group. If the weight of any student is added to the average weight of the other two the sums received are 48 kg, 52 kg, and 59 kg. The average weight (in kg) of the three students is:

A27

B26.5

C27.5

D28

Answer:

B. 26.5

Read Explanation:

Solution: Given: The weight of any student is added to the average weight of the other two the sums received are 48 kg, 52 kg, and 59 kg. Formula used: Average = Sum of all the values/Total number value Calculation: Let the weight (in kg) of the three students is x, y and z According to the question: [x + (y + z)/2] = 48 ⇒ (2x + y + z) = 96 ----(1) Again, [y + (x + z)/2] = 52 ⇒ (2y + x + z) = 104 ----(2) Now, [z + (x + y)/2] = 59 ⇒ (2z + x + y) = 118 ----(3) Multiply by 2 in equation (1); ⇒ (2x + y + z) × 2 = 96 × 2 ⇒ (4x + 2y + 2z) = 192 ----(4) Now, Subtracting from equation(4) to equation(2): [(4x + 2y + 2z) – (2y + x + z)] = (192 – 104) ⇒ [(4x + 2y + 2z – 2y – x – z)] = 88 ⇒ (3x + z) = 88 ----(a) Multiply by 2 in equation (3): ⇒ (2z + x + y) × 2 = 118 × 2 ⇒ 4z + 2x + 2y = 236 ----(5) Now, Subtracting from equation(5) to equation(2): [(4z + 2x + 2y) – (2y + x + z)] = 236 – 104 ⇒ x + 3z = 132 ----(b) Multiply by 3 in equation (a): ⇒ (3x + z) × 3 = 88 × 3 ⇒ (9x + 3z) = 264 ----(c) Now, Subtracting from equation(c) to equation(b) ⇒ [(9x + 3z) – (x + 3z)] = 264 – 132 = 132 ⇒ [9x + 3z – x – 3z] = 132 ⇒ 8x = 132 ⇒ x = 132/8 = 16.5 From equation (b): ⇒ (3x + z) = 88 ⇒ (3 × 16.5 + z) = 88 ⇒ 49.5 + z = 88 ⇒ z = 88 – 49.5 = 38.5 Putting the value of x and z in equation(1): (2 × 16.5 + y + 38.5) = 96 ⇒ 33 + y + 38.5 = 96 ⇒ y = (96 – 71.5) = 24.5 Average = (x + y + z)/3 ⇒ (16.5 + 24.5 + 38.5)/3 ⇒ 79.5/3 = 26.5 ∴ The average weight (in kg) of the three students is 26.5. Alternate Method: Given: The weight of any student is added to the average weight of the other two the sums received are 48 kg, 52 kg, and 59 kg. Formula used: Average = Sum of all the values/Total number value Calculation: Let the weight (in kg) of the three students is x, y and z According to the question: [x + (y + z)/2] = 48 ⇒ (2x + y + z) = 96 ----(1) Again, [y + (x + z)/2] = 52 ⇒ (2y + x + z) = 104 ----(2) Now, [z + (x + y)/2] = 59 ⇒ (2z + x + y) = 118 ----(3) Adding equation(1),equation(2) and equation(3); ⇒ (2x + y + z) + (2y + x + z) + (2z + x + y) = (96 + 104 + 118) ⇒ (4x + 4y + 4z) = 318 ⇒ 4(x + y + z) = 318 ⇒ (x + y + z) = 318/4 = 159/2 Now, Average = (x + y + z)/3 ⇒ [159/(2 × 3)] ⇒ 159/6 = 26.5 ∴ The average weight (in kg) of the three students is 26.5.


Related Questions:

ഒരു ക്ലാസിലെ 30 കുട്ടികളുടെ ശരാശരി വയസ്സ് 10 ആണ്. ടീച്ചറിനെയും കൂടി ചേർത്തപ്പോൾ ശരാശരി വയസ്സ് 11 ആയി. എങ്കിൽ ടീച്ചറുടെ വയസ്സ് എത്ര?
68,72,64,91,48 എന്നീ സംഖ്യകളുടെ ശരാശരി എന്ത്?
ഒരു തൊഴിൽ സ്ഥാപനത്തിലെ അഞ്ചു പേരുടെ ശരാശരി ദിവസവേതനം 400 രൂപയാണ്. 160 രൂപ ദിവസ വേതനത്തിൽ ഒരാൾകൂടി കമ്പനിയിൽ ചേരുന്നു .ഇപ്പോൾ അവരുടെ ശരാശരി ദിവസവേതനം എത്ര?
What is the average of first 49 natural numbers?
10 സഖ്യകളുടെ ശരാശരി 15.8. ഓരോ സംഖ്യയും അഞ്ച് വീതം കൂടിയാൽ സംഖ്യകളുടെ ശരാശരി എത്ര?