A27
B26.5
C27.5
D28
Answer:
B. 26.5
Read Explanation:
Solution: Given: The weight of any student is added to the average weight of the other two the sums received are 48 kg, 52 kg, and 59 kg. Formula used: Average = Sum of all the values/Total number value Calculation: Let the weight (in kg) of the three students is x, y and z According to the question: [x + (y + z)/2] = 48 ⇒ (2x + y + z) = 96 ----(1) Again, [y + (x + z)/2] = 52 ⇒ (2y + x + z) = 104 ----(2) Now, [z + (x + y)/2] = 59 ⇒ (2z + x + y) = 118 ----(3) Multiply by 2 in equation (1); ⇒ (2x + y + z) × 2 = 96 × 2 ⇒ (4x + 2y + 2z) = 192 ----(4) Now, Subtracting from equation(4) to equation(2): [(4x + 2y + 2z) – (2y + x + z)] = (192 – 104) ⇒ [(4x + 2y + 2z – 2y – x – z)] = 88 ⇒ (3x + z) = 88 ----(a) Multiply by 2 in equation (3): ⇒ (2z + x + y) × 2 = 118 × 2 ⇒ 4z + 2x + 2y = 236 ----(5) Now, Subtracting from equation(5) to equation(2): [(4z + 2x + 2y) – (2y + x + z)] = 236 – 104 ⇒ x + 3z = 132 ----(b) Multiply by 3 in equation (a): ⇒ (3x + z) × 3 = 88 × 3 ⇒ (9x + 3z) = 264 ----(c) Now, Subtracting from equation(c) to equation(b) ⇒ [(9x + 3z) – (x + 3z)] = 264 – 132 = 132 ⇒ [9x + 3z – x – 3z] = 132 ⇒ 8x = 132 ⇒ x = 132/8 = 16.5 From equation (b): ⇒ (3x + z) = 88 ⇒ (3 × 16.5 + z) = 88 ⇒ 49.5 + z = 88 ⇒ z = 88 – 49.5 = 38.5 Putting the value of x and z in equation(1): (2 × 16.5 + y + 38.5) = 96 ⇒ 33 + y + 38.5 = 96 ⇒ y = (96 – 71.5) = 24.5 Average = (x + y + z)/3 ⇒ (16.5 + 24.5 + 38.5)/3 ⇒ 79.5/3 = 26.5 ∴ The average weight (in kg) of the three students is 26.5. Alternate Method: Given: The weight of any student is added to the average weight of the other two the sums received are 48 kg, 52 kg, and 59 kg. Formula used: Average = Sum of all the values/Total number value Calculation: Let the weight (in kg) of the three students is x, y and z According to the question: [x + (y + z)/2] = 48 ⇒ (2x + y + z) = 96 ----(1) Again, [y + (x + z)/2] = 52 ⇒ (2y + x + z) = 104 ----(2) Now, [z + (x + y)/2] = 59 ⇒ (2z + x + y) = 118 ----(3) Adding equation(1),equation(2) and equation(3); ⇒ (2x + y + z) + (2y + x + z) + (2z + x + y) = (96 + 104 + 118) ⇒ (4x + 4y + 4z) = 318 ⇒ 4(x + y + z) = 318 ⇒ (x + y + z) = 318/4 = 159/2 Now, Average = (x + y + z)/3 ⇒ [159/(2 × 3)] ⇒ 159/6 = 26.5 ∴ The average weight (in kg) of the three students is 26.5.