App Logo

No.1 PSC Learning App

1M+ Downloads
Two small circular grounds of diameters 42 m and 26 m are to be replaced by a bigger circular ground. What would be the radius of the new ground if the new ground has the same area as two small grounds?

A23 m

B25.01 m

C24.63 m

D25 m

Answer:

C. 24.63 m

Read Explanation:

Solution:

Given:

The diameter of the two small circular grounds = 42 m and 26 m respectively

Formula Used:

Area of the circle = πR2

Calculation:

The radius of the 1st circle R1 = 42/2  = 21 m

The radius of the 2nd circle R2 = 26/2 = 13 m  

Total Area of the two small ground = π(R21 + R22) = π ( 212 + 132) = π  × (441 + 169)

Total area = 610π m2

New ground area = 610π 

610π  = πR2 

⇒ R= 610

⇒ R = √610

⇒ R ≈ 24.63 m

∴ The radius of the new ground if the new ground has the same area as two small grounds is 24.63 m.


Related Questions:

How many cubes each of edge 3 cm can be cut from a cube of edge 15 cm
താഴെപ്പറയുന്നവയിൽ ഏത് ഘന രുപത്തിനാണ് 2 മുഖങ്ങൾ മാത്രം ഉള്ളത് ?
ചതുരസ്തംഭാകൃതിയുള്ള ഒരു മെഴുക് കട്ടയുടെ നീളം 15 സെന്റീമീറ്ററും വീതി 10 സെന്റീമീറ്റർ ഉയരം എട്ട് സെന്റീമീറ്റർ ആണ് ഇതിൽ നിന്നും ഒരു സെന്റീമീറ്റർ ഉയരമുള്ള എത്ര സമചതുര കട്ടകൾ ഉണ്ടാക്കാം ?
ഒരു വൃത്തസൂപികയുടെ ആരം 2 മടങ്ങും ഉന്നതി 3 മടങ്ങും വർദ്ധിപ്പിച്ചാൽ വ്യാപ്തം എത്ര മടങ്ങായി വർദ്ധിക്കും ?
If the circumference of a circle is reduced by 50%, its area will be reduced by :