App Logo

No.1 PSC Learning App

1M+ Downloads
Two trains, one 125 metres and the other 375 metres long are running in opposite directions on parallel tracks, at the speed of 81 km/hr and 63 km/hr respectively. How much time will they take to cross each other?

A25 sec

B15 sec

C12.5 sec

D22.5 sec

Answer:

C. 12.5 sec

Read Explanation:

Solution: Given: Length of the first train = 125 metres Length of the second train = 375 metres Speed of the first train = 81 km/hr Speed of the second train = 63 km/hr Formula used: Time is taken to cross each other = Total distance to be covered / Relative speed Solution: Total distance to be covered = Length of first train + Length of second train = 125 metres + 375 metres = 500 metres Relative speed = Speed of first train + Speed of second train = (81 km/hr + 63 km/hr) × (5/18) m/s [Converting km/hr to m/s] = (144 × 5)/18 m/s = 40 m/s Time is taken to cross each other = Total distance to be covered / Relative speed = 500 metres/40 m/s = 12.5 seconds Therefore, the two trains will take 12.5 seconds to cross each other.


Related Questions:

ഹാഷിം 8000 മീറ്റർ നീളമുള്ള ഒരു റോഡ് 80 മിനിറ്റ് കൊണ്ട് നടന്നു എങ്കിൽ അയാളുടെ വേഗം കി.മീ./ മണിക്കൂറിൽ എത്ര?
A motor car starts with the speed of 70 kmph with its increasing every 2 hours by 10 kmph. In how many hours will it cover 345 km?
രാധ 45 km/hr വേഗത്തിൽ കാർ ഓടിച്ചാൽ അവൾ ഒരു സെക്കൻഡിൽ എത്ര ദൂരം സഞ്ചരിക്കും.
48 കി.മീ/മണിക്കൂര്‍ വേഗതയില്‍ സഞ്ചരിച്ചാല്‍ 80 മിനിറ്റുകൊണ്ടെത്തുന്ന ദൂരം 40 മിനിറ്റു കൊണ്ടെത്താന്‍ എത്ര വേഗതയില്‍ സഞ്ചരിക്കണം?
Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. Find the ratio of their speeds?